Loading…
Copper-Catalyzed C–C Cross-Couplings of Tertiary Alkyl Halides with Anilines Enabled by Cyclopropenimine-Based Ligands
Catalytic cross-couplings of tertiary alkyl electrophiles with carbon nucleophiles offer a powerful platform for constructing quaternary carbon centers, which are prevalent in bioactive molecules. However, these reactions remain underdeveloped primarily because of steric challenges that impede effic...
Saved in:
Published in: | Journal of the American Chemical Society 2023-11, Vol.145 (45), p.24897-24905 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Catalytic cross-couplings of tertiary alkyl electrophiles with carbon nucleophiles offer a powerful platform for constructing quaternary carbon centers, which are prevalent in bioactive molecules. However, these reactions remain underdeveloped primarily because of steric challenges that impede efficient bond formation. Herein, we describe the copper-catalyzed synthesis of such centers through the C(sp 3)–C(sp 2) bond-forming reaction between tertiary alkyl halides and arene rings of aniline derivatives, enabled by the strategic implementation of bidentate bis(cyclopropenimine) ligands. The copper catalyst bound by two imino-nitrogen atoms of these ligands, which have never been employed in metal catalysis previously, is highly effective in rapidly activating tertiary halides to generate alkyl radicals, allowing them to react with aryl nucleophiles under mild conditions with remarkably short reaction times (1–2 h). Various tertiary halides bearing carbonyl functional groups can be coupled with secondary or primary anilines, furnishing a range of quaternary carbon centers in good yields. Several mechanistic observations support the generation of copper(II) species and alkyl radicals which as a result elucidate the steps in the proposed catalytic cycle. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.3c09369 |