Loading…

Mnemonic Rutile–Rutile Interfaces Triggering Spontaneous Dissociation of Water

Water interaction with mineral surfaces is a complex living system decisive for any photocatalytic process. Resolving the atomistic structure of mineral–water interfaces is thus crucial for understanding these processes. Fibrous rutile TiO2, grown hydrothermally on twinned rutile seeds under acidic...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2024-01, Vol.36 (4), p.e2308027-n/a
Main Authors: Ribić, Vesna, Jordan, Vanja, Drev, Sandra, Kovač, Janez, Dražić, Goran, Rečnik, Aleksander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3287-cd850e7d8afdda59d859d1d2594d712d7c6a40df8e97beb694406404189c819d3
container_end_page n/a
container_issue 4
container_start_page e2308027
container_title Advanced materials (Weinheim)
container_volume 36
creator Ribić, Vesna
Jordan, Vanja
Drev, Sandra
Kovač, Janez
Dražić, Goran
Rečnik, Aleksander
description Water interaction with mineral surfaces is a complex living system decisive for any photocatalytic process. Resolving the atomistic structure of mineral–water interfaces is thus crucial for understanding these processes. Fibrous rutile TiO2, grown hydrothermally on twinned rutile seeds under acidic conditions, is studied in terms of interface translation, atomic structure, and surface chemistry in the presence of water, by means of advanced microscopy and spectroscopy methods combined with structure modeling and density functional theory calculations. It is shown that fibers while staying in stable separation during their growth, adopt a special crystallographic registry that is controlled by repulsion forces between fully hydroxylated and protonated (110) surfaces. During relaxation, a turbulent proton transfer and cracking of O─H bonds is observed, generating a strong acidic character via proton jump from bridge ─OHb to terminal ─OHt groups, and spontaneous dissociation of interfacial water via a transient protonation of the ─OHt groups. It is shown, that this specific interface structure can be implemented to induce acidic response in an initially neutral medium when re‐immersed. This is thought to be the first demonstration of quantum‐confined mineral–water interface, capable of memorizing its past and conveying its structurally encoded properties into a new environment. Surface mineral–water interactions are decisive for any photocatalytic process. In this work, fibrous rutile homoepitaxially grown on twinned rutile seeds with a specific interface structure that displays the ability to spontaneously dissociate water are investigated. This is thought to be the first example of an interface with mnemonic behavior capable of transmitting structurally encoded properties to a new environment.
doi_str_mv 10.1002/adma.202308027
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2887477306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918062982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3287-cd850e7d8afdda59d859d1d2594d712d7c6a40df8e97beb694406404189c819d3</originalsourceid><addsrcrecordid>eNqFkEtLxDAQx4Mouj6uHqXgxUvXSZo2yXFxfYGi-MBjyCbpEtk2a9Ii3vwOfkM_iZH6AC-eZob5zZ_hh9AuhjEGIIfKNGpMgBTAgbAVNMIlwTkFUa6iEYiizEVF-QbajPERAEQF1TraKFjaQFmM0PVlaxvfOp3d9J1b2PfXt6HJztvOhlppG7O74OZzG1w7z26Xvu1Ua30fs6mL0WunOufbzNfZg0oX22itVotod77qFro_Ob47Ossvrk7PjyYXuS4IZ7k2vATLDFe1MaoUaRQGG1IKahgmhulKUTA1t4LN7KwSlEJFgWIuNMfCFFvoYMhdBv_U29jJxkVtF4vhOUk4Z5SxAqqE7v9BH30f2vSdJAJzqIjgJFHjgdLBxxhsLZfBNSq8SAzy07X8dC1_XKeDva_YftZY84N_y02AGIDn5PPlnzg5mV5OfsM_AOsxi5c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918062982</pqid></control><display><type>article</type><title>Mnemonic Rutile–Rutile Interfaces Triggering Spontaneous Dissociation of Water</title><source>Wiley</source><creator>Ribić, Vesna ; Jordan, Vanja ; Drev, Sandra ; Kovač, Janez ; Dražić, Goran ; Rečnik, Aleksander</creator><creatorcontrib>Ribić, Vesna ; Jordan, Vanja ; Drev, Sandra ; Kovač, Janez ; Dražić, Goran ; Rečnik, Aleksander</creatorcontrib><description>Water interaction with mineral surfaces is a complex living system decisive for any photocatalytic process. Resolving the atomistic structure of mineral–water interfaces is thus crucial for understanding these processes. Fibrous rutile TiO2, grown hydrothermally on twinned rutile seeds under acidic conditions, is studied in terms of interface translation, atomic structure, and surface chemistry in the presence of water, by means of advanced microscopy and spectroscopy methods combined with structure modeling and density functional theory calculations. It is shown that fibers while staying in stable separation during their growth, adopt a special crystallographic registry that is controlled by repulsion forces between fully hydroxylated and protonated (110) surfaces. During relaxation, a turbulent proton transfer and cracking of O─H bonds is observed, generating a strong acidic character via proton jump from bridge ─OHb to terminal ─OHt groups, and spontaneous dissociation of interfacial water via a transient protonation of the ─OHt groups. It is shown, that this specific interface structure can be implemented to induce acidic response in an initially neutral medium when re‐immersed. This is thought to be the first demonstration of quantum‐confined mineral–water interface, capable of memorizing its past and conveying its structurally encoded properties into a new environment. Surface mineral–water interactions are decisive for any photocatalytic process. In this work, fibrous rutile homoepitaxially grown on twinned rutile seeds with a specific interface structure that displays the ability to spontaneously dissociate water are investigated. This is thought to be the first example of an interface with mnemonic behavior capable of transmitting structurally encoded properties to a new environment.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202308027</identifier><identifier>PMID: 37935053</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Atomic structure ; Bonding strength ; Crystallography ; Density functional theory ; hydrogen‐bond networks ; Interfaces ; nanowires ; Protonation ; Protons ; Rutile ; Titanium dioxide ; water dissociation ; water splitting</subject><ispartof>Advanced materials (Weinheim), 2024-01, Vol.36 (4), p.e2308027-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3287-cd850e7d8afdda59d859d1d2594d712d7c6a40df8e97beb694406404189c819d3</cites><orcidid>0000-0002-6636-8591 ; 0000-0002-0551-6562 ; 0000-0001-7809-8050 ; 0000-0001-8185-7433 ; 0000-0002-4324-246X ; 0000-0002-5721-4435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37935053$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ribić, Vesna</creatorcontrib><creatorcontrib>Jordan, Vanja</creatorcontrib><creatorcontrib>Drev, Sandra</creatorcontrib><creatorcontrib>Kovač, Janez</creatorcontrib><creatorcontrib>Dražić, Goran</creatorcontrib><creatorcontrib>Rečnik, Aleksander</creatorcontrib><title>Mnemonic Rutile–Rutile Interfaces Triggering Spontaneous Dissociation of Water</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Water interaction with mineral surfaces is a complex living system decisive for any photocatalytic process. Resolving the atomistic structure of mineral–water interfaces is thus crucial for understanding these processes. Fibrous rutile TiO2, grown hydrothermally on twinned rutile seeds under acidic conditions, is studied in terms of interface translation, atomic structure, and surface chemistry in the presence of water, by means of advanced microscopy and spectroscopy methods combined with structure modeling and density functional theory calculations. It is shown that fibers while staying in stable separation during their growth, adopt a special crystallographic registry that is controlled by repulsion forces between fully hydroxylated and protonated (110) surfaces. During relaxation, a turbulent proton transfer and cracking of O─H bonds is observed, generating a strong acidic character via proton jump from bridge ─OHb to terminal ─OHt groups, and spontaneous dissociation of interfacial water via a transient protonation of the ─OHt groups. It is shown, that this specific interface structure can be implemented to induce acidic response in an initially neutral medium when re‐immersed. This is thought to be the first demonstration of quantum‐confined mineral–water interface, capable of memorizing its past and conveying its structurally encoded properties into a new environment. Surface mineral–water interactions are decisive for any photocatalytic process. In this work, fibrous rutile homoepitaxially grown on twinned rutile seeds with a specific interface structure that displays the ability to spontaneously dissociate water are investigated. This is thought to be the first example of an interface with mnemonic behavior capable of transmitting structurally encoded properties to a new environment.</description><subject>Atomic structure</subject><subject>Bonding strength</subject><subject>Crystallography</subject><subject>Density functional theory</subject><subject>hydrogen‐bond networks</subject><subject>Interfaces</subject><subject>nanowires</subject><subject>Protonation</subject><subject>Protons</subject><subject>Rutile</subject><subject>Titanium dioxide</subject><subject>water dissociation</subject><subject>water splitting</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAQx4Mouj6uHqXgxUvXSZo2yXFxfYGi-MBjyCbpEtk2a9Ii3vwOfkM_iZH6AC-eZob5zZ_hh9AuhjEGIIfKNGpMgBTAgbAVNMIlwTkFUa6iEYiizEVF-QbajPERAEQF1TraKFjaQFmM0PVlaxvfOp3d9J1b2PfXt6HJztvOhlppG7O74OZzG1w7z26Xvu1Ua30fs6mL0WunOufbzNfZg0oX22itVotod77qFro_Ob47Ossvrk7PjyYXuS4IZ7k2vATLDFe1MaoUaRQGG1IKahgmhulKUTA1t4LN7KwSlEJFgWIuNMfCFFvoYMhdBv_U29jJxkVtF4vhOUk4Z5SxAqqE7v9BH30f2vSdJAJzqIjgJFHjgdLBxxhsLZfBNSq8SAzy07X8dC1_XKeDva_YftZY84N_y02AGIDn5PPlnzg5mV5OfsM_AOsxi5c</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Ribić, Vesna</creator><creator>Jordan, Vanja</creator><creator>Drev, Sandra</creator><creator>Kovač, Janez</creator><creator>Dražić, Goran</creator><creator>Rečnik, Aleksander</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6636-8591</orcidid><orcidid>https://orcid.org/0000-0002-0551-6562</orcidid><orcidid>https://orcid.org/0000-0001-7809-8050</orcidid><orcidid>https://orcid.org/0000-0001-8185-7433</orcidid><orcidid>https://orcid.org/0000-0002-4324-246X</orcidid><orcidid>https://orcid.org/0000-0002-5721-4435</orcidid></search><sort><creationdate>20240101</creationdate><title>Mnemonic Rutile–Rutile Interfaces Triggering Spontaneous Dissociation of Water</title><author>Ribić, Vesna ; Jordan, Vanja ; Drev, Sandra ; Kovač, Janez ; Dražić, Goran ; Rečnik, Aleksander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3287-cd850e7d8afdda59d859d1d2594d712d7c6a40df8e97beb694406404189c819d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atomic structure</topic><topic>Bonding strength</topic><topic>Crystallography</topic><topic>Density functional theory</topic><topic>hydrogen‐bond networks</topic><topic>Interfaces</topic><topic>nanowires</topic><topic>Protonation</topic><topic>Protons</topic><topic>Rutile</topic><topic>Titanium dioxide</topic><topic>water dissociation</topic><topic>water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ribić, Vesna</creatorcontrib><creatorcontrib>Jordan, Vanja</creatorcontrib><creatorcontrib>Drev, Sandra</creatorcontrib><creatorcontrib>Kovač, Janez</creatorcontrib><creatorcontrib>Dražić, Goran</creatorcontrib><creatorcontrib>Rečnik, Aleksander</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ribić, Vesna</au><au>Jordan, Vanja</au><au>Drev, Sandra</au><au>Kovač, Janez</au><au>Dražić, Goran</au><au>Rečnik, Aleksander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mnemonic Rutile–Rutile Interfaces Triggering Spontaneous Dissociation of Water</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>36</volume><issue>4</issue><spage>e2308027</spage><epage>n/a</epage><pages>e2308027-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Water interaction with mineral surfaces is a complex living system decisive for any photocatalytic process. Resolving the atomistic structure of mineral–water interfaces is thus crucial for understanding these processes. Fibrous rutile TiO2, grown hydrothermally on twinned rutile seeds under acidic conditions, is studied in terms of interface translation, atomic structure, and surface chemistry in the presence of water, by means of advanced microscopy and spectroscopy methods combined with structure modeling and density functional theory calculations. It is shown that fibers while staying in stable separation during their growth, adopt a special crystallographic registry that is controlled by repulsion forces between fully hydroxylated and protonated (110) surfaces. During relaxation, a turbulent proton transfer and cracking of O─H bonds is observed, generating a strong acidic character via proton jump from bridge ─OHb to terminal ─OHt groups, and spontaneous dissociation of interfacial water via a transient protonation of the ─OHt groups. It is shown, that this specific interface structure can be implemented to induce acidic response in an initially neutral medium when re‐immersed. This is thought to be the first demonstration of quantum‐confined mineral–water interface, capable of memorizing its past and conveying its structurally encoded properties into a new environment. Surface mineral–water interactions are decisive for any photocatalytic process. In this work, fibrous rutile homoepitaxially grown on twinned rutile seeds with a specific interface structure that displays the ability to spontaneously dissociate water are investigated. This is thought to be the first example of an interface with mnemonic behavior capable of transmitting structurally encoded properties to a new environment.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37935053</pmid><doi>10.1002/adma.202308027</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6636-8591</orcidid><orcidid>https://orcid.org/0000-0002-0551-6562</orcidid><orcidid>https://orcid.org/0000-0001-7809-8050</orcidid><orcidid>https://orcid.org/0000-0001-8185-7433</orcidid><orcidid>https://orcid.org/0000-0002-4324-246X</orcidid><orcidid>https://orcid.org/0000-0002-5721-4435</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-01, Vol.36 (4), p.e2308027-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2887477306
source Wiley
subjects Atomic structure
Bonding strength
Crystallography
Density functional theory
hydrogen‐bond networks
Interfaces
nanowires
Protonation
Protons
Rutile
Titanium dioxide
water dissociation
water splitting
title Mnemonic Rutile–Rutile Interfaces Triggering Spontaneous Dissociation of Water
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A52%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mnemonic%20Rutile%E2%80%93Rutile%20Interfaces%20Triggering%20Spontaneous%20Dissociation%20of%20Water&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Ribi%C4%87,%20Vesna&rft.date=2024-01-01&rft.volume=36&rft.issue=4&rft.spage=e2308027&rft.epage=n/a&rft.pages=e2308027-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202308027&rft_dat=%3Cproquest_cross%3E2918062982%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3287-cd850e7d8afdda59d859d1d2594d712d7c6a40df8e97beb694406404189c819d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918062982&rft_id=info:pmid/37935053&rfr_iscdi=true