Loading…
Stable isotope composition in tree rings of Fagus sylvatica L. saplings reflects environmental variation induced by silviculture and microsite factors
•We examined the response of δ13C and δ18O of beech saplings to tree cutting.•δ13C was nearly 2‰ less negative in control stands compared to canopy gaps.•Light conditions, microclimate and soil properties influenced δ13C and δ18O.•Climate change will affect natural tree regeneration in Dinaric fir-b...
Saved in:
Published in: | Forest ecology and management 2023-06, Vol.537, p.120949, Article 120949 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | •We examined the response of δ13C and δ18O of beech saplings to tree cutting.•δ13C was nearly 2‰ less negative in control stands compared to canopy gaps.•Light conditions, microclimate and soil properties influenced δ13C and δ18O.•Climate change will affect natural tree regeneration in Dinaric fir-beech forests.
Natural regeneration of tree species is sensitive to silvicultural interventions. This study aimed to investigate the effects of different cutting intensities and local topographic and soil conditions on the composition of stable carbon (δ13C) and oxygen (δ18O) isotopes in wood of young beech (Fagus sylvatica L.) trees. Beech saplings in the regeneration layer were sampled in summer 2018 at three study sites in Dinaric fir-beech forests in the karst area of Slovenia. Three different cutting intensities were performed in 2012: i) no cutting (control), ii) 50% cutting of the stand’s growing stock creating thinned stands, and iii) 100% cutting of the stand’s growing stock creating 0.4 ha canopy gaps. We show that δ13C increased along the gradient of cutting intensity. On average, δ13C values in the tree rings were ∼ 2‰ increased in trees from canopy gaps than from closed control stands. Furthermore, δ13C was higher on south-facing slopes characterized by higher air temperatures and lower relative humidity compared to north-facing slopes of karst sinkholes. Additionally, the results suggest a dependence of δ18O on interannual and cross-site climatic variations, particularly in the case of summer precipitation amount. δ18O also responded to soil depth, with beech individuals exhibiting lower values on deeper soils, presumably characterized by higher soil water availability compared to shallow soils. The results are discussed in the context of future climate change, as many beech-dominated forests on karst terrain in the Dinaric Mountains are particularly affected by climate warming and drying due to prolonged and reoccurring summer droughts, intensified large-scale disturbances, and often shallow soils with low water storage capacity. |
---|---|
ISSN: | 0378-1127 1872-7042 |
DOI: | 10.1016/j.foreco.2023.120949 |