Loading…

Synthesis of porous hydroxysodalite from aluminosilicate rich clay soils: application towards fluoride and pathogen removal

This article discussed the potential application of hydrothermally synthesized porous hydroxysodalite material synthesized from aluminosilicate clay material as a multifunctional adsorbent for fluoride and pathogen removal from groundwater. The efficiency of the material towards fluoride removal was...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science and pollution research international 2023-02, Vol.30 (9), p.22483-22493
Main Authors: Gitari, Wilson Mugera, Obijole, Olumuyiwa Adewale, Mudzielwana, Rabelani
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article discussed the potential application of hydrothermally synthesized porous hydroxysodalite material synthesized from aluminosilicate clay material as a multifunctional adsorbent for fluoride and pathogen removal from groundwater. The efficiency of the material towards fluoride removal was evaluated using batch experiments while the efficacy against the E. coli strain was evaluated using well-assay diffusion method. The material showed a maximum fluoride adsorption capacity of 6.01 mg/g at initial concentration range of 5 to 100 mg/L when 1 g/100 mL adsorbent dosage was used at initial pH of 6 ± 0.5 after agitation time of 10 min. The adsorption kinetics data fitted better to pseudo first order of reaction kinetics indicating the dominance of physiosorption adsorption mechanism while the adsorption isotherm data showed better fit to both Langmuir and Freundlich adsorption isotherm model confirming monolayer and multilayer adsorption. The material was successfully regenerated and reused for up to eight successive regeneration-reuse cycles. However, its efficiency was inhibited by the presence of Cl − and CO 3 2− . The material also proven to have antimicrobial activity against E. coli strain. This study concluded that the porous hydroxysodalite material prepared in this study can be used as a multifunctional adsorbent for fluoride and pathogen removal from groundwater.
ISSN:1614-7499
1614-7499
DOI:10.1007/s11356-022-23575-8