Loading…
Using drone soundings to study the impacts and compositions of plumes from a gigantic coal-fired power plant
The immense impacts of coal-fired power plant plumes on the atmospheric environment have caused great concern linked to climate and health issues. However, studies on the field observations of aerial plumes are relatively limited, mainly due to the lack of suitable plume observation tools and techni...
Saved in:
Published in: | The Science of the total environment 2023-10, Vol.893, p.164709-164709, Article 164709 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c453t-f36561a5f43736c50644274878c57dfdefea82fded6f36f3971f66fd90c33e013 |
---|---|
cites | cdi_FETCH-LOGICAL-c453t-f36561a5f43736c50644274878c57dfdefea82fded6f36f3971f66fd90c33e013 |
container_end_page | 164709 |
container_issue | |
container_start_page | 164709 |
container_title | The Science of the total environment |
container_volume | 893 |
creator | Chen, Yen-Chen Wang, Jia-Lin Chang, Chih-Yuan Chuang, Ming-Tung Chou, Charles C.-K. Pan, Xiang-Xu Ho, Yu-Jui Ou-Yang, Chang-Feng Liu, Wen-Tzu Chang, Chih-Chung |
description | The immense impacts of coal-fired power plant plumes on the atmospheric environment have caused great concern linked to climate and health issues. However, studies on the field observations of aerial plumes are relatively limited, mainly due to the lack of suitable plume observation tools and techniques. In this study, we use a multicopter unmanned aerial vehicle (UAV) sounding technique to study the influences of the aerial plumes of the world's fourth-largest coal-fired power plant on the atmospheric physical/chemical conditions and air quality. A set of species, including 106 volatile organic compounds (VOCs), CO, CO2, CH4, PM2.5, and O3, and meteorological variables of temperature (T), specific humidity (SH), and wind data, are collected by the UAV sounding technique. The results reveal that the large-scale plumes of the coal-fired power plant cause local temperature inversion and humidity changes, and even affect the dispersion of pollutants below. The chemical compositions of coal-fired power plant plumes are significantly different from those of another ubiquitous vehicular source. High fractions of ethane, ethene, and benzene and low fractions of n-butane and isopentane found in plumes could serve as the key features to help distinguish the influences of coal-fired power plant plumes from other pollution sources in a particular area. By taking the ratios of pollutants (e.g., PM2.5, CO, CH4, and VOCs) to CO2 in plumes and the CO2 emission amounts of the power plant into calculation, we enable the easy quantification of the specific pollutant emissions released from power plant plumes to the atmosphere. In summary, observation by using drone soundings dissecting the aerial plumes provides a new methodology that allows aerial plumes to be readily detected and characterized. Furthermore, the influences of the plumes on the atmospheric physical/chemical conditions and air quality can be assessed rather straightforwardly, which was not easily achievable in the past.
[Display omitted]
•Drone soundings are used to detect plumes from a coal-fired powered plant.•Physical/chemical variables of plumes are instantaneously characterized.•Large plumes cause local temperature inversion and even affect dispersion.•Emissions are estimated based on the ratios of pollutants to CO2 in the plumes. |
doi_str_mv | 10.1016/j.scitotenv.2023.164709 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2887615603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969723033326</els_id><sourcerecordid>2887615603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-f36561a5f43736c50644274878c57dfdefea82fded6f36f3971f66fd90c33e013</originalsourceid><addsrcrecordid>eNqNkUtPHSEUgEljU6-2f6GydDO3MDA8lsaoNTHppq4JhcMtNzPDCIzGf19urnXbsjkhfOfB-RC6oGRLCRXf9tviYk0V5udtT3q2pYJLoj-gDVVSd5T04gRtCOGq00LLU3RWyp60IxX9hE6ZZIQy3W_Q-FjivMM-pxlwSevs27XgmnCpq3_F9TfgOC3W1YLt7LFL05JKrDHNBaeAl3GdoOCQ04Qt3sWdnWt0DbNjF2IGj5f0Arlx7eEz-hjsWODLWzxHj7c3P6-_dw8_7u6vrx46xwdWu8DEIKgdAm9zCjcQwXkvuZLKDdIHDwGs6lv0oqGBaUmDEMFr4hiD9rFzdHmsu-T0tEKpZorFwdhmgLQW0yslBR0EYf-B9lworTlpqDyiLqdSMgSz5DjZ_GooMQcrZm_erZiDFXO00jK_vjVZf03g3_P-amjA1RGAtpXnCPlQCGYHvq3QVeNT_GeTPyBRo48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824689940</pqid></control><display><type>article</type><title>Using drone soundings to study the impacts and compositions of plumes from a gigantic coal-fired power plant</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Chen, Yen-Chen ; Wang, Jia-Lin ; Chang, Chih-Yuan ; Chuang, Ming-Tung ; Chou, Charles C.-K. ; Pan, Xiang-Xu ; Ho, Yu-Jui ; Ou-Yang, Chang-Feng ; Liu, Wen-Tzu ; Chang, Chih-Chung</creator><creatorcontrib>Chen, Yen-Chen ; Wang, Jia-Lin ; Chang, Chih-Yuan ; Chuang, Ming-Tung ; Chou, Charles C.-K. ; Pan, Xiang-Xu ; Ho, Yu-Jui ; Ou-Yang, Chang-Feng ; Liu, Wen-Tzu ; Chang, Chih-Chung</creatorcontrib><description>The immense impacts of coal-fired power plant plumes on the atmospheric environment have caused great concern linked to climate and health issues. However, studies on the field observations of aerial plumes are relatively limited, mainly due to the lack of suitable plume observation tools and techniques. In this study, we use a multicopter unmanned aerial vehicle (UAV) sounding technique to study the influences of the aerial plumes of the world's fourth-largest coal-fired power plant on the atmospheric physical/chemical conditions and air quality. A set of species, including 106 volatile organic compounds (VOCs), CO, CO2, CH4, PM2.5, and O3, and meteorological variables of temperature (T), specific humidity (SH), and wind data, are collected by the UAV sounding technique. The results reveal that the large-scale plumes of the coal-fired power plant cause local temperature inversion and humidity changes, and even affect the dispersion of pollutants below. The chemical compositions of coal-fired power plant plumes are significantly different from those of another ubiquitous vehicular source. High fractions of ethane, ethene, and benzene and low fractions of n-butane and isopentane found in plumes could serve as the key features to help distinguish the influences of coal-fired power plant plumes from other pollution sources in a particular area. By taking the ratios of pollutants (e.g., PM2.5, CO, CH4, and VOCs) to CO2 in plumes and the CO2 emission amounts of the power plant into calculation, we enable the easy quantification of the specific pollutant emissions released from power plant plumes to the atmosphere. In summary, observation by using drone soundings dissecting the aerial plumes provides a new methodology that allows aerial plumes to be readily detected and characterized. Furthermore, the influences of the plumes on the atmospheric physical/chemical conditions and air quality can be assessed rather straightforwardly, which was not easily achievable in the past.
[Display omitted]
•Drone soundings are used to detect plumes from a coal-fired powered plant.•Physical/chemical variables of plumes are instantaneously characterized.•Large plumes cause local temperature inversion and even affect dispersion.•Emissions are estimated based on the ratios of pollutants to CO2 in the plumes.</description><identifier>ISSN: 0048-9697</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2023.164709</identifier><identifier>PMID: 37301392</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Aerial sampling ; air quality ; benzene ; butanes ; carbon dioxide ; climate ; coal ; Drone ; environment ; ethane ; ethylene ; methodology ; pentane ; Plume composition ; pollutants ; pollution ; power plants ; Real-time ; species ; specific humidity ; temperature inversion ; Unmanned aerial vehicle (UAV) ; unmanned aerial vehicles ; Vertical profiles ; volatile organic compounds ; wind</subject><ispartof>The Science of the total environment, 2023-10, Vol.893, p.164709-164709, Article 164709</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-f36561a5f43736c50644274878c57dfdefea82fded6f36f3971f66fd90c33e013</citedby><cites>FETCH-LOGICAL-c453t-f36561a5f43736c50644274878c57dfdefea82fded6f36f3971f66fd90c33e013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37301392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Yen-Chen</creatorcontrib><creatorcontrib>Wang, Jia-Lin</creatorcontrib><creatorcontrib>Chang, Chih-Yuan</creatorcontrib><creatorcontrib>Chuang, Ming-Tung</creatorcontrib><creatorcontrib>Chou, Charles C.-K.</creatorcontrib><creatorcontrib>Pan, Xiang-Xu</creatorcontrib><creatorcontrib>Ho, Yu-Jui</creatorcontrib><creatorcontrib>Ou-Yang, Chang-Feng</creatorcontrib><creatorcontrib>Liu, Wen-Tzu</creatorcontrib><creatorcontrib>Chang, Chih-Chung</creatorcontrib><title>Using drone soundings to study the impacts and compositions of plumes from a gigantic coal-fired power plant</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>The immense impacts of coal-fired power plant plumes on the atmospheric environment have caused great concern linked to climate and health issues. However, studies on the field observations of aerial plumes are relatively limited, mainly due to the lack of suitable plume observation tools and techniques. In this study, we use a multicopter unmanned aerial vehicle (UAV) sounding technique to study the influences of the aerial plumes of the world's fourth-largest coal-fired power plant on the atmospheric physical/chemical conditions and air quality. A set of species, including 106 volatile organic compounds (VOCs), CO, CO2, CH4, PM2.5, and O3, and meteorological variables of temperature (T), specific humidity (SH), and wind data, are collected by the UAV sounding technique. The results reveal that the large-scale plumes of the coal-fired power plant cause local temperature inversion and humidity changes, and even affect the dispersion of pollutants below. The chemical compositions of coal-fired power plant plumes are significantly different from those of another ubiquitous vehicular source. High fractions of ethane, ethene, and benzene and low fractions of n-butane and isopentane found in plumes could serve as the key features to help distinguish the influences of coal-fired power plant plumes from other pollution sources in a particular area. By taking the ratios of pollutants (e.g., PM2.5, CO, CH4, and VOCs) to CO2 in plumes and the CO2 emission amounts of the power plant into calculation, we enable the easy quantification of the specific pollutant emissions released from power plant plumes to the atmosphere. In summary, observation by using drone soundings dissecting the aerial plumes provides a new methodology that allows aerial plumes to be readily detected and characterized. Furthermore, the influences of the plumes on the atmospheric physical/chemical conditions and air quality can be assessed rather straightforwardly, which was not easily achievable in the past.
[Display omitted]
•Drone soundings are used to detect plumes from a coal-fired powered plant.•Physical/chemical variables of plumes are instantaneously characterized.•Large plumes cause local temperature inversion and even affect dispersion.•Emissions are estimated based on the ratios of pollutants to CO2 in the plumes.</description><subject>Aerial sampling</subject><subject>air quality</subject><subject>benzene</subject><subject>butanes</subject><subject>carbon dioxide</subject><subject>climate</subject><subject>coal</subject><subject>Drone</subject><subject>environment</subject><subject>ethane</subject><subject>ethylene</subject><subject>methodology</subject><subject>pentane</subject><subject>Plume composition</subject><subject>pollutants</subject><subject>pollution</subject><subject>power plants</subject><subject>Real-time</subject><subject>species</subject><subject>specific humidity</subject><subject>temperature inversion</subject><subject>Unmanned aerial vehicle (UAV)</subject><subject>unmanned aerial vehicles</subject><subject>Vertical profiles</subject><subject>volatile organic compounds</subject><subject>wind</subject><issn>0048-9697</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNkUtPHSEUgEljU6-2f6GydDO3MDA8lsaoNTHppq4JhcMtNzPDCIzGf19urnXbsjkhfOfB-RC6oGRLCRXf9tviYk0V5udtT3q2pYJLoj-gDVVSd5T04gRtCOGq00LLU3RWyp60IxX9hE6ZZIQy3W_Q-FjivMM-pxlwSevs27XgmnCpq3_F9TfgOC3W1YLt7LFL05JKrDHNBaeAl3GdoOCQ04Qt3sWdnWt0DbNjF2IGj5f0Arlx7eEz-hjsWODLWzxHj7c3P6-_dw8_7u6vrx46xwdWu8DEIKgdAm9zCjcQwXkvuZLKDdIHDwGs6lv0oqGBaUmDEMFr4hiD9rFzdHmsu-T0tEKpZorFwdhmgLQW0yslBR0EYf-B9lworTlpqDyiLqdSMgSz5DjZ_GooMQcrZm_erZiDFXO00jK_vjVZf03g3_P-amjA1RGAtpXnCPlQCGYHvq3QVeNT_GeTPyBRo48</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Chen, Yen-Chen</creator><creator>Wang, Jia-Lin</creator><creator>Chang, Chih-Yuan</creator><creator>Chuang, Ming-Tung</creator><creator>Chou, Charles C.-K.</creator><creator>Pan, Xiang-Xu</creator><creator>Ho, Yu-Jui</creator><creator>Ou-Yang, Chang-Feng</creator><creator>Liu, Wen-Tzu</creator><creator>Chang, Chih-Chung</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20231001</creationdate><title>Using drone soundings to study the impacts and compositions of plumes from a gigantic coal-fired power plant</title><author>Chen, Yen-Chen ; Wang, Jia-Lin ; Chang, Chih-Yuan ; Chuang, Ming-Tung ; Chou, Charles C.-K. ; Pan, Xiang-Xu ; Ho, Yu-Jui ; Ou-Yang, Chang-Feng ; Liu, Wen-Tzu ; Chang, Chih-Chung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-f36561a5f43736c50644274878c57dfdefea82fded6f36f3971f66fd90c33e013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerial sampling</topic><topic>air quality</topic><topic>benzene</topic><topic>butanes</topic><topic>carbon dioxide</topic><topic>climate</topic><topic>coal</topic><topic>Drone</topic><topic>environment</topic><topic>ethane</topic><topic>ethylene</topic><topic>methodology</topic><topic>pentane</topic><topic>Plume composition</topic><topic>pollutants</topic><topic>pollution</topic><topic>power plants</topic><topic>Real-time</topic><topic>species</topic><topic>specific humidity</topic><topic>temperature inversion</topic><topic>Unmanned aerial vehicle (UAV)</topic><topic>unmanned aerial vehicles</topic><topic>Vertical profiles</topic><topic>volatile organic compounds</topic><topic>wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yen-Chen</creatorcontrib><creatorcontrib>Wang, Jia-Lin</creatorcontrib><creatorcontrib>Chang, Chih-Yuan</creatorcontrib><creatorcontrib>Chuang, Ming-Tung</creatorcontrib><creatorcontrib>Chou, Charles C.-K.</creatorcontrib><creatorcontrib>Pan, Xiang-Xu</creatorcontrib><creatorcontrib>Ho, Yu-Jui</creatorcontrib><creatorcontrib>Ou-Yang, Chang-Feng</creatorcontrib><creatorcontrib>Liu, Wen-Tzu</creatorcontrib><creatorcontrib>Chang, Chih-Chung</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yen-Chen</au><au>Wang, Jia-Lin</au><au>Chang, Chih-Yuan</au><au>Chuang, Ming-Tung</au><au>Chou, Charles C.-K.</au><au>Pan, Xiang-Xu</au><au>Ho, Yu-Jui</au><au>Ou-Yang, Chang-Feng</au><au>Liu, Wen-Tzu</au><au>Chang, Chih-Chung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using drone soundings to study the impacts and compositions of plumes from a gigantic coal-fired power plant</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>893</volume><spage>164709</spage><epage>164709</epage><pages>164709-164709</pages><artnum>164709</artnum><issn>0048-9697</issn><eissn>1879-1026</eissn><abstract>The immense impacts of coal-fired power plant plumes on the atmospheric environment have caused great concern linked to climate and health issues. However, studies on the field observations of aerial plumes are relatively limited, mainly due to the lack of suitable plume observation tools and techniques. In this study, we use a multicopter unmanned aerial vehicle (UAV) sounding technique to study the influences of the aerial plumes of the world's fourth-largest coal-fired power plant on the atmospheric physical/chemical conditions and air quality. A set of species, including 106 volatile organic compounds (VOCs), CO, CO2, CH4, PM2.5, and O3, and meteorological variables of temperature (T), specific humidity (SH), and wind data, are collected by the UAV sounding technique. The results reveal that the large-scale plumes of the coal-fired power plant cause local temperature inversion and humidity changes, and even affect the dispersion of pollutants below. The chemical compositions of coal-fired power plant plumes are significantly different from those of another ubiquitous vehicular source. High fractions of ethane, ethene, and benzene and low fractions of n-butane and isopentane found in plumes could serve as the key features to help distinguish the influences of coal-fired power plant plumes from other pollution sources in a particular area. By taking the ratios of pollutants (e.g., PM2.5, CO, CH4, and VOCs) to CO2 in plumes and the CO2 emission amounts of the power plant into calculation, we enable the easy quantification of the specific pollutant emissions released from power plant plumes to the atmosphere. In summary, observation by using drone soundings dissecting the aerial plumes provides a new methodology that allows aerial plumes to be readily detected and characterized. Furthermore, the influences of the plumes on the atmospheric physical/chemical conditions and air quality can be assessed rather straightforwardly, which was not easily achievable in the past.
[Display omitted]
•Drone soundings are used to detect plumes from a coal-fired powered plant.•Physical/chemical variables of plumes are instantaneously characterized.•Large plumes cause local temperature inversion and even affect dispersion.•Emissions are estimated based on the ratios of pollutants to CO2 in the plumes.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>37301392</pmid><doi>10.1016/j.scitotenv.2023.164709</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0048-9697 |
ispartof | The Science of the total environment, 2023-10, Vol.893, p.164709-164709, Article 164709 |
issn | 0048-9697 1879-1026 |
language | eng |
recordid | cdi_proquest_miscellaneous_2887615603 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Aerial sampling air quality benzene butanes carbon dioxide climate coal Drone environment ethane ethylene methodology pentane Plume composition pollutants pollution power plants Real-time species specific humidity temperature inversion Unmanned aerial vehicle (UAV) unmanned aerial vehicles Vertical profiles volatile organic compounds wind |
title | Using drone soundings to study the impacts and compositions of plumes from a gigantic coal-fired power plant |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T18%3A59%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20drone%20soundings%20to%20study%20the%20impacts%20and%20compositions%20of%20plumes%20from%20a%20gigantic%20coal-fired%20power%20plant&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Chen,%20Yen-Chen&rft.date=2023-10-01&rft.volume=893&rft.spage=164709&rft.epage=164709&rft.pages=164709-164709&rft.artnum=164709&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2023.164709&rft_dat=%3Cproquest_cross%3E2887615603%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c453t-f36561a5f43736c50644274878c57dfdefea82fded6f36f3971f66fd90c33e013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2824689940&rft_id=info:pmid/37301392&rfr_iscdi=true |