Loading…
Aspergillus sclerotiorum lipolytic activity and its application in bioremediation of high-fat dairy wastewater environments
Oils and grease (O&G) have low affinity for water and represent a class of pollutants present in the dairy industry. Enzyme-mediated bioremediation using biocatalysts, such as lipases, has shown promising potential in biotechnology, as they are versatile catalysts with high enantioselectivity an...
Saved in:
Published in: | Environmental science and pollution research international 2023-03, Vol.30 (13), p.35517-35527 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Oils and grease (O&G) have low affinity for water and represent a class of pollutants present in the dairy industry. Enzyme-mediated bioremediation using biocatalysts, such as lipases, has shown promising potential in biotechnology, as they are versatile catalysts with high enantioselectivity and regioselectivity and easy availability, being considered a clean technology (white biotechnology). Specially in the treatment of effluents from dairy industries, these enzymes are of particular importance as they specifically hydrolyze O&G. In this context, the objective of this work is to prospect filamentous fungi with the ability to synthesize lipases for application in a high-fat dairy wastewater environment. We identified and characterized the fungal species
Aspergillus sclerotiorum
as a good lipase producer. Specifically, we observed highest lipolytic activity (20.72 U g
−1
) after 96 h of fermentation using sunflower seed as substrate. The fungal solid fermented was used in the bioremediation in dairy effluent to reduce O&G. The experiment was done in kinetic from 24 to 168 h and reduced over 90% of the O&G present in the sample after 168 h. Collectively, our work demonstrated the efficiency and applicability of fungal fermented solids in bioremediation and how this process can contribute to a more sustainable wastewater pretreatment, reducing the generation of effluents produced by dairy industries. |
---|---|
ISSN: | 1614-7499 1614-7499 |
DOI: | 10.1007/s11356-022-24669-z |