Loading…

Microfluidic‐Assisted 3D Printing Zinc Powder Anode with 2D Conductive MOF/MXene Heterostructures for High‐Stable Zinc−Organic Battery

Zinc powder (Zn‐P) anodes have significant advantages in terms of universality and machinability compared with Zn foil anodes. However, their rough surface, which has a high surface area, intensifies the uncontrollable growth of Zn dendrites and parasitic side reactions. In this study, an anti‐corro...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2024-02, Vol.36 (6), p.e2309753-n/a
Main Authors: Lu, Hongyu, Hu, Jisong, Zhang, Kaiqi, Zhao, Jingxin, Deng, Shenzhen, Li, Yujie, Xu, Bingang, Pang, Huan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Zinc powder (Zn‐P) anodes have significant advantages in terms of universality and machinability compared with Zn foil anodes. However, their rough surface, which has a high surface area, intensifies the uncontrollable growth of Zn dendrites and parasitic side reactions. In this study, an anti‐corrosive Zn‐P‐based anode with a functional layer formed from a MXene and Cu‐THBQ (MXene/Cu‐THBQ) heterostructure is successfully fabricated via microfluidic‐assisted 3D printing. The unusual anti‐corrosive and strong adsorption of Zn ions using the MXene/Cu‐THBQ functional layer can effectively homogenize the Zn ion flux and inhibit the hydrogen evolution reaction (HER) during the repeated process of Zn plating/stripping, thus achieving stable Zn cycling. Consequently, a symmetric cell based on Zn‐P with the MXene/Cu‐THBQ anode exhibits a highly reversible cycling of 1800 h at 2 mA cm−2/1 mAh cm−2. Furthermore, a Zn‐organic full battery matched with a 4‐hydroxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl organic cathode riveted on graphene delivers a high reversible capacity and maintains a long cycle life. An innovative microfluidic‐assisted 3D printing strategy is proposed to successfully realize 3D hierarchical porous Zn powder aerogel anode with 2D conductive MOF/MXene heterostructure. More importantly, a zinc‐organic full battery matched with 4‐hydroxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl organic cathode riveted on graphene delivers a high reversible discharge capacity and maintains a long cycle life of 1200 cycles with a capacity retention of 96.8%.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.202309753