Loading…

Microfluidic‐Assisted 3D Printing Zinc Powder Anode with 2D Conductive MOF/MXene Heterostructures for High‐Stable Zinc−Organic Battery

Zinc powder (Zn‐P) anodes have significant advantages in terms of universality and machinability compared with Zn foil anodes. However, their rough surface, which has a high surface area, intensifies the uncontrollable growth of Zn dendrites and parasitic side reactions. In this study, an anti‐corro...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2024-02, Vol.36 (6), p.e2309753-n/a
Main Authors: Lu, Hongyu, Hu, Jisong, Zhang, Kaiqi, Zhao, Jingxin, Deng, Shenzhen, Li, Yujie, Xu, Bingang, Pang, Huan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4133-ebb34fa1216c9f909c887eaaffb3e2d3dd52aec918a1796daee2ea4edac5da833
cites cdi_FETCH-LOGICAL-c4133-ebb34fa1216c9f909c887eaaffb3e2d3dd52aec918a1796daee2ea4edac5da833
container_end_page n/a
container_issue 6
container_start_page e2309753
container_title Advanced materials (Weinheim)
container_volume 36
creator Lu, Hongyu
Hu, Jisong
Zhang, Kaiqi
Zhao, Jingxin
Deng, Shenzhen
Li, Yujie
Xu, Bingang
Pang, Huan
description Zinc powder (Zn‐P) anodes have significant advantages in terms of universality and machinability compared with Zn foil anodes. However, their rough surface, which has a high surface area, intensifies the uncontrollable growth of Zn dendrites and parasitic side reactions. In this study, an anti‐corrosive Zn‐P‐based anode with a functional layer formed from a MXene and Cu‐THBQ (MXene/Cu‐THBQ) heterostructure is successfully fabricated via microfluidic‐assisted 3D printing. The unusual anti‐corrosive and strong adsorption of Zn ions using the MXene/Cu‐THBQ functional layer can effectively homogenize the Zn ion flux and inhibit the hydrogen evolution reaction (HER) during the repeated process of Zn plating/stripping, thus achieving stable Zn cycling. Consequently, a symmetric cell based on Zn‐P with the MXene/Cu‐THBQ anode exhibits a highly reversible cycling of 1800 h at 2 mA cm−2/1 mAh cm−2. Furthermore, a Zn‐organic full battery matched with a 4‐hydroxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl organic cathode riveted on graphene delivers a high reversible capacity and maintains a long cycle life. An innovative microfluidic‐assisted 3D printing strategy is proposed to successfully realize 3D hierarchical porous Zn powder aerogel anode with 2D conductive MOF/MXene heterostructure. More importantly, a zinc‐organic full battery matched with 4‐hydroxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl organic cathode riveted on graphene delivers a high reversible discharge capacity and maintains a long cycle life of 1200 cycles with a capacity retention of 96.8%.
doi_str_mv 10.1002/adma.202309753
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2888032684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923244152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4133-ebb34fa1216c9f909c887eaaffb3e2d3dd52aec918a1796daee2ea4edac5da833</originalsourceid><addsrcrecordid>eNqFkT1vFDEQhi0EIpdAS4ks0dDsxR_7YZfLXcIh5XSRAAnRWF579uJob53Yu5yuo6SgQPzE_BIcLglSGqop5nkfjeZF6BUlU0oIO9Z2o6eMME5kVfAnaEILRrOcyOIpmhDJi0yWuThAhzFeEkJkScrn6IBXkstKVBP0c-lM8G03OuvMzfdfdYwuDmAxn-Pz4PrB9Wv81fUGn_uthYDr3lvAWzdcYDbHM9_b0QzuG-Dl6vR4-QV6wAsYIPg4hLQZA0Tc-oAXbn2R_B8H3XTw13jz4_cqrHXvDH6nhxTZvUDPWt1FeHk3j9Dn05NPs0V2tnr_YVafZSannGfQNDxvNWW0NLKVRBohKtC6bRsOzHJrC6bBSCo0rWRpNQADnYPVprBacH6E3u69V8FfjxAHtXHRQNfpHvwYFRNCEM5KkSf0zSP00o-hT9cpJhlneZ4enqjpnkq_jDFAq66C2-iwU5So257UbU_qoacUeH2nHZsN2Af8vpgEyD2wdR3s_qNT9XxZ_5P_AVqgpAY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923244152</pqid></control><display><type>article</type><title>Microfluidic‐Assisted 3D Printing Zinc Powder Anode with 2D Conductive MOF/MXene Heterostructures for High‐Stable Zinc−Organic Battery</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Lu, Hongyu ; Hu, Jisong ; Zhang, Kaiqi ; Zhao, Jingxin ; Deng, Shenzhen ; Li, Yujie ; Xu, Bingang ; Pang, Huan</creator><creatorcontrib>Lu, Hongyu ; Hu, Jisong ; Zhang, Kaiqi ; Zhao, Jingxin ; Deng, Shenzhen ; Li, Yujie ; Xu, Bingang ; Pang, Huan</creatorcontrib><description>Zinc powder (Zn‐P) anodes have significant advantages in terms of universality and machinability compared with Zn foil anodes. However, their rough surface, which has a high surface area, intensifies the uncontrollable growth of Zn dendrites and parasitic side reactions. In this study, an anti‐corrosive Zn‐P‐based anode with a functional layer formed from a MXene and Cu‐THBQ (MXene/Cu‐THBQ) heterostructure is successfully fabricated via microfluidic‐assisted 3D printing. The unusual anti‐corrosive and strong adsorption of Zn ions using the MXene/Cu‐THBQ functional layer can effectively homogenize the Zn ion flux and inhibit the hydrogen evolution reaction (HER) during the repeated process of Zn plating/stripping, thus achieving stable Zn cycling. Consequently, a symmetric cell based on Zn‐P with the MXene/Cu‐THBQ anode exhibits a highly reversible cycling of 1800 h at 2 mA cm−2/1 mAh cm−2. Furthermore, a Zn‐organic full battery matched with a 4‐hydroxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl organic cathode riveted on graphene delivers a high reversible capacity and maintains a long cycle life. An innovative microfluidic‐assisted 3D printing strategy is proposed to successfully realize 3D hierarchical porous Zn powder aerogel anode with 2D conductive MOF/MXene heterostructure. More importantly, a zinc‐organic full battery matched with 4‐hydroxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl organic cathode riveted on graphene delivers a high reversible discharge capacity and maintains a long cycle life of 1200 cycles with a capacity retention of 96.8%.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202309753</identifier><identifier>PMID: 37939787</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>2D conductive metal‐organic frameworks ; 2D heterostructures ; 3-D printers ; Anodes ; Copper ; Cycles ; Graphene ; Heterostructures ; Hydrogen evolution reactions ; Ion flux ; Machinability ; Metal foils ; Microfluidics ; MXenes ; Three dimensional printing ; Zinc ; zinc powder anodes ; zinc‐organic batteries</subject><ispartof>Advanced materials (Weinheim), 2024-02, Vol.36 (6), p.e2309753-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4133-ebb34fa1216c9f909c887eaaffb3e2d3dd52aec918a1796daee2ea4edac5da833</citedby><cites>FETCH-LOGICAL-c4133-ebb34fa1216c9f909c887eaaffb3e2d3dd52aec918a1796daee2ea4edac5da833</cites><orcidid>0000-0002-5319-0480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37939787$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Hongyu</creatorcontrib><creatorcontrib>Hu, Jisong</creatorcontrib><creatorcontrib>Zhang, Kaiqi</creatorcontrib><creatorcontrib>Zhao, Jingxin</creatorcontrib><creatorcontrib>Deng, Shenzhen</creatorcontrib><creatorcontrib>Li, Yujie</creatorcontrib><creatorcontrib>Xu, Bingang</creatorcontrib><creatorcontrib>Pang, Huan</creatorcontrib><title>Microfluidic‐Assisted 3D Printing Zinc Powder Anode with 2D Conductive MOF/MXene Heterostructures for High‐Stable Zinc−Organic Battery</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Zinc powder (Zn‐P) anodes have significant advantages in terms of universality and machinability compared with Zn foil anodes. However, their rough surface, which has a high surface area, intensifies the uncontrollable growth of Zn dendrites and parasitic side reactions. In this study, an anti‐corrosive Zn‐P‐based anode with a functional layer formed from a MXene and Cu‐THBQ (MXene/Cu‐THBQ) heterostructure is successfully fabricated via microfluidic‐assisted 3D printing. The unusual anti‐corrosive and strong adsorption of Zn ions using the MXene/Cu‐THBQ functional layer can effectively homogenize the Zn ion flux and inhibit the hydrogen evolution reaction (HER) during the repeated process of Zn plating/stripping, thus achieving stable Zn cycling. Consequently, a symmetric cell based on Zn‐P with the MXene/Cu‐THBQ anode exhibits a highly reversible cycling of 1800 h at 2 mA cm−2/1 mAh cm−2. Furthermore, a Zn‐organic full battery matched with a 4‐hydroxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl organic cathode riveted on graphene delivers a high reversible capacity and maintains a long cycle life. An innovative microfluidic‐assisted 3D printing strategy is proposed to successfully realize 3D hierarchical porous Zn powder aerogel anode with 2D conductive MOF/MXene heterostructure. More importantly, a zinc‐organic full battery matched with 4‐hydroxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl organic cathode riveted on graphene delivers a high reversible discharge capacity and maintains a long cycle life of 1200 cycles with a capacity retention of 96.8%.</description><subject>2D conductive metal‐organic frameworks</subject><subject>2D heterostructures</subject><subject>3-D printers</subject><subject>Anodes</subject><subject>Copper</subject><subject>Cycles</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Hydrogen evolution reactions</subject><subject>Ion flux</subject><subject>Machinability</subject><subject>Metal foils</subject><subject>Microfluidics</subject><subject>MXenes</subject><subject>Three dimensional printing</subject><subject>Zinc</subject><subject>zinc powder anodes</subject><subject>zinc‐organic batteries</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkT1vFDEQhi0EIpdAS4ks0dDsxR_7YZfLXcIh5XSRAAnRWF579uJob53Yu5yuo6SgQPzE_BIcLglSGqop5nkfjeZF6BUlU0oIO9Z2o6eMME5kVfAnaEILRrOcyOIpmhDJi0yWuThAhzFeEkJkScrn6IBXkstKVBP0c-lM8G03OuvMzfdfdYwuDmAxn-Pz4PrB9Wv81fUGn_uthYDr3lvAWzdcYDbHM9_b0QzuG-Dl6vR4-QV6wAsYIPg4hLQZA0Tc-oAXbn2R_B8H3XTw13jz4_cqrHXvDH6nhxTZvUDPWt1FeHk3j9Dn05NPs0V2tnr_YVafZSannGfQNDxvNWW0NLKVRBohKtC6bRsOzHJrC6bBSCo0rWRpNQADnYPVprBacH6E3u69V8FfjxAHtXHRQNfpHvwYFRNCEM5KkSf0zSP00o-hT9cpJhlneZ4enqjpnkq_jDFAq66C2-iwU5So257UbU_qoacUeH2nHZsN2Af8vpgEyD2wdR3s_qNT9XxZ_5P_AVqgpAY</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Lu, Hongyu</creator><creator>Hu, Jisong</creator><creator>Zhang, Kaiqi</creator><creator>Zhao, Jingxin</creator><creator>Deng, Shenzhen</creator><creator>Li, Yujie</creator><creator>Xu, Bingang</creator><creator>Pang, Huan</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5319-0480</orcidid></search><sort><creationdate>20240201</creationdate><title>Microfluidic‐Assisted 3D Printing Zinc Powder Anode with 2D Conductive MOF/MXene Heterostructures for High‐Stable Zinc−Organic Battery</title><author>Lu, Hongyu ; Hu, Jisong ; Zhang, Kaiqi ; Zhao, Jingxin ; Deng, Shenzhen ; Li, Yujie ; Xu, Bingang ; Pang, Huan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4133-ebb34fa1216c9f909c887eaaffb3e2d3dd52aec918a1796daee2ea4edac5da833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2D conductive metal‐organic frameworks</topic><topic>2D heterostructures</topic><topic>3-D printers</topic><topic>Anodes</topic><topic>Copper</topic><topic>Cycles</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Hydrogen evolution reactions</topic><topic>Ion flux</topic><topic>Machinability</topic><topic>Metal foils</topic><topic>Microfluidics</topic><topic>MXenes</topic><topic>Three dimensional printing</topic><topic>Zinc</topic><topic>zinc powder anodes</topic><topic>zinc‐organic batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Hongyu</creatorcontrib><creatorcontrib>Hu, Jisong</creatorcontrib><creatorcontrib>Zhang, Kaiqi</creatorcontrib><creatorcontrib>Zhao, Jingxin</creatorcontrib><creatorcontrib>Deng, Shenzhen</creatorcontrib><creatorcontrib>Li, Yujie</creatorcontrib><creatorcontrib>Xu, Bingang</creatorcontrib><creatorcontrib>Pang, Huan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Hongyu</au><au>Hu, Jisong</au><au>Zhang, Kaiqi</au><au>Zhao, Jingxin</au><au>Deng, Shenzhen</au><au>Li, Yujie</au><au>Xu, Bingang</au><au>Pang, Huan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic‐Assisted 3D Printing Zinc Powder Anode with 2D Conductive MOF/MXene Heterostructures for High‐Stable Zinc−Organic Battery</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>36</volume><issue>6</issue><spage>e2309753</spage><epage>n/a</epage><pages>e2309753-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Zinc powder (Zn‐P) anodes have significant advantages in terms of universality and machinability compared with Zn foil anodes. However, their rough surface, which has a high surface area, intensifies the uncontrollable growth of Zn dendrites and parasitic side reactions. In this study, an anti‐corrosive Zn‐P‐based anode with a functional layer formed from a MXene and Cu‐THBQ (MXene/Cu‐THBQ) heterostructure is successfully fabricated via microfluidic‐assisted 3D printing. The unusual anti‐corrosive and strong adsorption of Zn ions using the MXene/Cu‐THBQ functional layer can effectively homogenize the Zn ion flux and inhibit the hydrogen evolution reaction (HER) during the repeated process of Zn plating/stripping, thus achieving stable Zn cycling. Consequently, a symmetric cell based on Zn‐P with the MXene/Cu‐THBQ anode exhibits a highly reversible cycling of 1800 h at 2 mA cm−2/1 mAh cm−2. Furthermore, a Zn‐organic full battery matched with a 4‐hydroxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl organic cathode riveted on graphene delivers a high reversible capacity and maintains a long cycle life. An innovative microfluidic‐assisted 3D printing strategy is proposed to successfully realize 3D hierarchical porous Zn powder aerogel anode with 2D conductive MOF/MXene heterostructure. More importantly, a zinc‐organic full battery matched with 4‐hydroxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl organic cathode riveted on graphene delivers a high reversible discharge capacity and maintains a long cycle life of 1200 cycles with a capacity retention of 96.8%.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37939787</pmid><doi>10.1002/adma.202309753</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5319-0480</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-02, Vol.36 (6), p.e2309753-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2888032684
source Wiley-Blackwell Read & Publish Collection
subjects 2D conductive metal‐organic frameworks
2D heterostructures
3-D printers
Anodes
Copper
Cycles
Graphene
Heterostructures
Hydrogen evolution reactions
Ion flux
Machinability
Metal foils
Microfluidics
MXenes
Three dimensional printing
Zinc
zinc powder anodes
zinc‐organic batteries
title Microfluidic‐Assisted 3D Printing Zinc Powder Anode with 2D Conductive MOF/MXene Heterostructures for High‐Stable Zinc−Organic Battery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A12%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%E2%80%90Assisted%203D%20Printing%20Zinc%20Powder%20Anode%20with%202D%20Conductive%20MOF/MXene%20Heterostructures%20for%20High%E2%80%90Stable%20Zinc%E2%88%92Organic%20Battery&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Lu,%20Hongyu&rft.date=2024-02-01&rft.volume=36&rft.issue=6&rft.spage=e2309753&rft.epage=n/a&rft.pages=e2309753-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202309753&rft_dat=%3Cproquest_cross%3E2923244152%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4133-ebb34fa1216c9f909c887eaaffb3e2d3dd52aec918a1796daee2ea4edac5da833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2923244152&rft_id=info:pmid/37939787&rfr_iscdi=true