Loading…
Microfluidic‐Assisted 3D Printing Zinc Powder Anode with 2D Conductive MOF/MXene Heterostructures for High‐Stable Zinc−Organic Battery
Zinc powder (Zn‐P) anodes have significant advantages in terms of universality and machinability compared with Zn foil anodes. However, their rough surface, which has a high surface area, intensifies the uncontrollable growth of Zn dendrites and parasitic side reactions. In this study, an anti‐corro...
Saved in:
Published in: | Advanced materials (Weinheim) 2024-02, Vol.36 (6), p.e2309753-n/a |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4133-ebb34fa1216c9f909c887eaaffb3e2d3dd52aec918a1796daee2ea4edac5da833 |
---|---|
cites | cdi_FETCH-LOGICAL-c4133-ebb34fa1216c9f909c887eaaffb3e2d3dd52aec918a1796daee2ea4edac5da833 |
container_end_page | n/a |
container_issue | 6 |
container_start_page | e2309753 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Lu, Hongyu Hu, Jisong Zhang, Kaiqi Zhao, Jingxin Deng, Shenzhen Li, Yujie Xu, Bingang Pang, Huan |
description | Zinc powder (Zn‐P) anodes have significant advantages in terms of universality and machinability compared with Zn foil anodes. However, their rough surface, which has a high surface area, intensifies the uncontrollable growth of Zn dendrites and parasitic side reactions. In this study, an anti‐corrosive Zn‐P‐based anode with a functional layer formed from a MXene and Cu‐THBQ (MXene/Cu‐THBQ) heterostructure is successfully fabricated via microfluidic‐assisted 3D printing. The unusual anti‐corrosive and strong adsorption of Zn ions using the MXene/Cu‐THBQ functional layer can effectively homogenize the Zn ion flux and inhibit the hydrogen evolution reaction (HER) during the repeated process of Zn plating/stripping, thus achieving stable Zn cycling. Consequently, a symmetric cell based on Zn‐P with the MXene/Cu‐THBQ anode exhibits a highly reversible cycling of 1800 h at 2 mA cm−2/1 mAh cm−2. Furthermore, a Zn‐organic full battery matched with a 4‐hydroxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl organic cathode riveted on graphene delivers a high reversible capacity and maintains a long cycle life.
An innovative microfluidic‐assisted 3D printing strategy is proposed to successfully realize 3D hierarchical porous Zn powder aerogel anode with 2D conductive MOF/MXene heterostructure. More importantly, a zinc‐organic full battery matched with 4‐hydroxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl organic cathode riveted on graphene delivers a high reversible discharge capacity and maintains a long cycle life of 1200 cycles with a capacity retention of 96.8%. |
doi_str_mv | 10.1002/adma.202309753 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2888032684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2923244152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4133-ebb34fa1216c9f909c887eaaffb3e2d3dd52aec918a1796daee2ea4edac5da833</originalsourceid><addsrcrecordid>eNqFkT1vFDEQhi0EIpdAS4ks0dDsxR_7YZfLXcIh5XSRAAnRWF579uJob53Yu5yuo6SgQPzE_BIcLglSGqop5nkfjeZF6BUlU0oIO9Z2o6eMME5kVfAnaEILRrOcyOIpmhDJi0yWuThAhzFeEkJkScrn6IBXkstKVBP0c-lM8G03OuvMzfdfdYwuDmAxn-Pz4PrB9Wv81fUGn_uthYDr3lvAWzdcYDbHM9_b0QzuG-Dl6vR4-QV6wAsYIPg4hLQZA0Tc-oAXbn2R_B8H3XTw13jz4_cqrHXvDH6nhxTZvUDPWt1FeHk3j9Dn05NPs0V2tnr_YVafZSannGfQNDxvNWW0NLKVRBohKtC6bRsOzHJrC6bBSCo0rWRpNQADnYPVprBacH6E3u69V8FfjxAHtXHRQNfpHvwYFRNCEM5KkSf0zSP00o-hT9cpJhlneZ4enqjpnkq_jDFAq66C2-iwU5So257UbU_qoacUeH2nHZsN2Af8vpgEyD2wdR3s_qNT9XxZ_5P_AVqgpAY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2923244152</pqid></control><display><type>article</type><title>Microfluidic‐Assisted 3D Printing Zinc Powder Anode with 2D Conductive MOF/MXene Heterostructures for High‐Stable Zinc−Organic Battery</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Lu, Hongyu ; Hu, Jisong ; Zhang, Kaiqi ; Zhao, Jingxin ; Deng, Shenzhen ; Li, Yujie ; Xu, Bingang ; Pang, Huan</creator><creatorcontrib>Lu, Hongyu ; Hu, Jisong ; Zhang, Kaiqi ; Zhao, Jingxin ; Deng, Shenzhen ; Li, Yujie ; Xu, Bingang ; Pang, Huan</creatorcontrib><description>Zinc powder (Zn‐P) anodes have significant advantages in terms of universality and machinability compared with Zn foil anodes. However, their rough surface, which has a high surface area, intensifies the uncontrollable growth of Zn dendrites and parasitic side reactions. In this study, an anti‐corrosive Zn‐P‐based anode with a functional layer formed from a MXene and Cu‐THBQ (MXene/Cu‐THBQ) heterostructure is successfully fabricated via microfluidic‐assisted 3D printing. The unusual anti‐corrosive and strong adsorption of Zn ions using the MXene/Cu‐THBQ functional layer can effectively homogenize the Zn ion flux and inhibit the hydrogen evolution reaction (HER) during the repeated process of Zn plating/stripping, thus achieving stable Zn cycling. Consequently, a symmetric cell based on Zn‐P with the MXene/Cu‐THBQ anode exhibits a highly reversible cycling of 1800 h at 2 mA cm−2/1 mAh cm−2. Furthermore, a Zn‐organic full battery matched with a 4‐hydroxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl organic cathode riveted on graphene delivers a high reversible capacity and maintains a long cycle life.
An innovative microfluidic‐assisted 3D printing strategy is proposed to successfully realize 3D hierarchical porous Zn powder aerogel anode with 2D conductive MOF/MXene heterostructure. More importantly, a zinc‐organic full battery matched with 4‐hydroxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl organic cathode riveted on graphene delivers a high reversible discharge capacity and maintains a long cycle life of 1200 cycles with a capacity retention of 96.8%.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202309753</identifier><identifier>PMID: 37939787</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>2D conductive metal‐organic frameworks ; 2D heterostructures ; 3-D printers ; Anodes ; Copper ; Cycles ; Graphene ; Heterostructures ; Hydrogen evolution reactions ; Ion flux ; Machinability ; Metal foils ; Microfluidics ; MXenes ; Three dimensional printing ; Zinc ; zinc powder anodes ; zinc‐organic batteries</subject><ispartof>Advanced materials (Weinheim), 2024-02, Vol.36 (6), p.e2309753-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4133-ebb34fa1216c9f909c887eaaffb3e2d3dd52aec918a1796daee2ea4edac5da833</citedby><cites>FETCH-LOGICAL-c4133-ebb34fa1216c9f909c887eaaffb3e2d3dd52aec918a1796daee2ea4edac5da833</cites><orcidid>0000-0002-5319-0480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37939787$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Hongyu</creatorcontrib><creatorcontrib>Hu, Jisong</creatorcontrib><creatorcontrib>Zhang, Kaiqi</creatorcontrib><creatorcontrib>Zhao, Jingxin</creatorcontrib><creatorcontrib>Deng, Shenzhen</creatorcontrib><creatorcontrib>Li, Yujie</creatorcontrib><creatorcontrib>Xu, Bingang</creatorcontrib><creatorcontrib>Pang, Huan</creatorcontrib><title>Microfluidic‐Assisted 3D Printing Zinc Powder Anode with 2D Conductive MOF/MXene Heterostructures for High‐Stable Zinc−Organic Battery</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Zinc powder (Zn‐P) anodes have significant advantages in terms of universality and machinability compared with Zn foil anodes. However, their rough surface, which has a high surface area, intensifies the uncontrollable growth of Zn dendrites and parasitic side reactions. In this study, an anti‐corrosive Zn‐P‐based anode with a functional layer formed from a MXene and Cu‐THBQ (MXene/Cu‐THBQ) heterostructure is successfully fabricated via microfluidic‐assisted 3D printing. The unusual anti‐corrosive and strong adsorption of Zn ions using the MXene/Cu‐THBQ functional layer can effectively homogenize the Zn ion flux and inhibit the hydrogen evolution reaction (HER) during the repeated process of Zn plating/stripping, thus achieving stable Zn cycling. Consequently, a symmetric cell based on Zn‐P with the MXene/Cu‐THBQ anode exhibits a highly reversible cycling of 1800 h at 2 mA cm−2/1 mAh cm−2. Furthermore, a Zn‐organic full battery matched with a 4‐hydroxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl organic cathode riveted on graphene delivers a high reversible capacity and maintains a long cycle life.
An innovative microfluidic‐assisted 3D printing strategy is proposed to successfully realize 3D hierarchical porous Zn powder aerogel anode with 2D conductive MOF/MXene heterostructure. More importantly, a zinc‐organic full battery matched with 4‐hydroxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl organic cathode riveted on graphene delivers a high reversible discharge capacity and maintains a long cycle life of 1200 cycles with a capacity retention of 96.8%.</description><subject>2D conductive metal‐organic frameworks</subject><subject>2D heterostructures</subject><subject>3-D printers</subject><subject>Anodes</subject><subject>Copper</subject><subject>Cycles</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Hydrogen evolution reactions</subject><subject>Ion flux</subject><subject>Machinability</subject><subject>Metal foils</subject><subject>Microfluidics</subject><subject>MXenes</subject><subject>Three dimensional printing</subject><subject>Zinc</subject><subject>zinc powder anodes</subject><subject>zinc‐organic batteries</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkT1vFDEQhi0EIpdAS4ks0dDsxR_7YZfLXcIh5XSRAAnRWF579uJob53Yu5yuo6SgQPzE_BIcLglSGqop5nkfjeZF6BUlU0oIO9Z2o6eMME5kVfAnaEILRrOcyOIpmhDJi0yWuThAhzFeEkJkScrn6IBXkstKVBP0c-lM8G03OuvMzfdfdYwuDmAxn-Pz4PrB9Wv81fUGn_uthYDr3lvAWzdcYDbHM9_b0QzuG-Dl6vR4-QV6wAsYIPg4hLQZA0Tc-oAXbn2R_B8H3XTw13jz4_cqrHXvDH6nhxTZvUDPWt1FeHk3j9Dn05NPs0V2tnr_YVafZSannGfQNDxvNWW0NLKVRBohKtC6bRsOzHJrC6bBSCo0rWRpNQADnYPVprBacH6E3u69V8FfjxAHtXHRQNfpHvwYFRNCEM5KkSf0zSP00o-hT9cpJhlneZ4enqjpnkq_jDFAq66C2-iwU5So257UbU_qoacUeH2nHZsN2Af8vpgEyD2wdR3s_qNT9XxZ_5P_AVqgpAY</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Lu, Hongyu</creator><creator>Hu, Jisong</creator><creator>Zhang, Kaiqi</creator><creator>Zhao, Jingxin</creator><creator>Deng, Shenzhen</creator><creator>Li, Yujie</creator><creator>Xu, Bingang</creator><creator>Pang, Huan</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5319-0480</orcidid></search><sort><creationdate>20240201</creationdate><title>Microfluidic‐Assisted 3D Printing Zinc Powder Anode with 2D Conductive MOF/MXene Heterostructures for High‐Stable Zinc−Organic Battery</title><author>Lu, Hongyu ; Hu, Jisong ; Zhang, Kaiqi ; Zhao, Jingxin ; Deng, Shenzhen ; Li, Yujie ; Xu, Bingang ; Pang, Huan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4133-ebb34fa1216c9f909c887eaaffb3e2d3dd52aec918a1796daee2ea4edac5da833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2D conductive metal‐organic frameworks</topic><topic>2D heterostructures</topic><topic>3-D printers</topic><topic>Anodes</topic><topic>Copper</topic><topic>Cycles</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Hydrogen evolution reactions</topic><topic>Ion flux</topic><topic>Machinability</topic><topic>Metal foils</topic><topic>Microfluidics</topic><topic>MXenes</topic><topic>Three dimensional printing</topic><topic>Zinc</topic><topic>zinc powder anodes</topic><topic>zinc‐organic batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Hongyu</creatorcontrib><creatorcontrib>Hu, Jisong</creatorcontrib><creatorcontrib>Zhang, Kaiqi</creatorcontrib><creatorcontrib>Zhao, Jingxin</creatorcontrib><creatorcontrib>Deng, Shenzhen</creatorcontrib><creatorcontrib>Li, Yujie</creatorcontrib><creatorcontrib>Xu, Bingang</creatorcontrib><creatorcontrib>Pang, Huan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Hongyu</au><au>Hu, Jisong</au><au>Zhang, Kaiqi</au><au>Zhao, Jingxin</au><au>Deng, Shenzhen</au><au>Li, Yujie</au><au>Xu, Bingang</au><au>Pang, Huan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic‐Assisted 3D Printing Zinc Powder Anode with 2D Conductive MOF/MXene Heterostructures for High‐Stable Zinc−Organic Battery</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>36</volume><issue>6</issue><spage>e2309753</spage><epage>n/a</epage><pages>e2309753-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Zinc powder (Zn‐P) anodes have significant advantages in terms of universality and machinability compared with Zn foil anodes. However, their rough surface, which has a high surface area, intensifies the uncontrollable growth of Zn dendrites and parasitic side reactions. In this study, an anti‐corrosive Zn‐P‐based anode with a functional layer formed from a MXene and Cu‐THBQ (MXene/Cu‐THBQ) heterostructure is successfully fabricated via microfluidic‐assisted 3D printing. The unusual anti‐corrosive and strong adsorption of Zn ions using the MXene/Cu‐THBQ functional layer can effectively homogenize the Zn ion flux and inhibit the hydrogen evolution reaction (HER) during the repeated process of Zn plating/stripping, thus achieving stable Zn cycling. Consequently, a symmetric cell based on Zn‐P with the MXene/Cu‐THBQ anode exhibits a highly reversible cycling of 1800 h at 2 mA cm−2/1 mAh cm−2. Furthermore, a Zn‐organic full battery matched with a 4‐hydroxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl organic cathode riveted on graphene delivers a high reversible capacity and maintains a long cycle life.
An innovative microfluidic‐assisted 3D printing strategy is proposed to successfully realize 3D hierarchical porous Zn powder aerogel anode with 2D conductive MOF/MXene heterostructure. More importantly, a zinc‐organic full battery matched with 4‐hydroxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl organic cathode riveted on graphene delivers a high reversible discharge capacity and maintains a long cycle life of 1200 cycles with a capacity retention of 96.8%.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37939787</pmid><doi>10.1002/adma.202309753</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5319-0480</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-02, Vol.36 (6), p.e2309753-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2888032684 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | 2D conductive metal‐organic frameworks 2D heterostructures 3-D printers Anodes Copper Cycles Graphene Heterostructures Hydrogen evolution reactions Ion flux Machinability Metal foils Microfluidics MXenes Three dimensional printing Zinc zinc powder anodes zinc‐organic batteries |
title | Microfluidic‐Assisted 3D Printing Zinc Powder Anode with 2D Conductive MOF/MXene Heterostructures for High‐Stable Zinc−Organic Battery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A12%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%E2%80%90Assisted%203D%20Printing%20Zinc%20Powder%20Anode%20with%202D%20Conductive%20MOF/MXene%20Heterostructures%20for%20High%E2%80%90Stable%20Zinc%E2%88%92Organic%20Battery&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Lu,%20Hongyu&rft.date=2024-02-01&rft.volume=36&rft.issue=6&rft.spage=e2309753&rft.epage=n/a&rft.pages=e2309753-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202309753&rft_dat=%3Cproquest_cross%3E2923244152%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4133-ebb34fa1216c9f909c887eaaffb3e2d3dd52aec918a1796daee2ea4edac5da833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2923244152&rft_id=info:pmid/37939787&rfr_iscdi=true |