Loading…
Climatologically Aided Mapping of Daily Precipitation and Temperature
Accurately mapped meteorological data are an essential component for hydrologic and ecological research conducted at broad scales. A simple yet effective method for mapping daily weather conditions across heterogeneous landscapes is described and assessed. Daily weather data recorded at point locati...
Saved in:
Published in: | Journal of applied meteorology (1988) 2005-10, Vol.44 (10), p.1501-1510 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Accurately mapped meteorological data are an essential component for hydrologic and ecological research conducted at broad scales. A simple yet effective method for mapping daily weather conditions across heterogeneous landscapes is described and assessed. Daily weather data recorded at point locations are integrated with long-term-average climate maps to reconstruct spatially explicit estimates of daily precipitation and temperature extrema. The method uses ordinary kriging to interpolate base station data spatially into fields of approximately 2-km grain size. The fields are subsequently adjusted by 30-yr-average climate maps [Parameter-Elevation Regression on Independent Slopes Model (PRISM)], which incorporate adiabatic lapse rates, orographic effects, coastal proximity, and other environmental factors. The accuracy assessment evaluated an interpolation-only approach and the new method by comparing predicted and observed values from an independent validation dataset. The results of the accuracy assessment are compared for a 24-yr period for California. For all three weather variables, mean absolute errors (MAE) of the climate-imprint method were considerably smaller than those of the interpolation-only approach. MAE for predicted daily precipitation was ±2.5 mm, with a bias of +0.01. MAE for predicted daily minimum and maximum temperatures were ±1.7° and ±2.0°C, respectively, with corresponding biases of −0.41° and −0.38°C. MAE differed seasonally for all three weather variables, but the method was stable despite variation in the number of base stations available for each day. |
---|---|
ISSN: | 0894-8763 1520-0450 |
DOI: | 10.1175/JAM2295.1 |