Loading…

Fault branching and rupture directivity

Could the directivity of a complex earthquake be inferred from the ruptured fault branches it created? Typically, branches develop in forward orientation, making acute angles relative to the propagation direction. Direct backward branching of the same style as the main rupture (e.g., both right late...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research. B. Solid Earth 2005-06, Vol.110 (B6), p.B06312.1-n/a
Main Authors: Fliss, Sonia, Bhat, Harsha S., Dmowska, Renata, Rice, James R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a5790-7666e3b297f2f114a3b23a999629c8fdb3cb74f467142015e96143f6093fbba03
cites cdi_FETCH-LOGICAL-a5790-7666e3b297f2f114a3b23a999629c8fdb3cb74f467142015e96143f6093fbba03
container_end_page n/a
container_issue B6
container_start_page B06312.1
container_title Journal of Geophysical Research. B. Solid Earth
container_volume 110
creator Fliss, Sonia
Bhat, Harsha S.
Dmowska, Renata
Rice, James R.
description Could the directivity of a complex earthquake be inferred from the ruptured fault branches it created? Typically, branches develop in forward orientation, making acute angles relative to the propagation direction. Direct backward branching of the same style as the main rupture (e.g., both right lateral) is disallowed by the stress field at the rupture front. Here we propose another mechanism of backward branching. In that mechanism, rupture stops along one fault strand, radiates stress to a neighboring strand, nucleates there, and develops bilaterally, generating a backward branch. Such makes diagnosing directivity of a past earthquake difficult without detailed knowledge of the branching process. As a field example, in the Landers 1992 earthquake, rupture stopped at the northern end of the Kickapoo fault, jumped onto the Homestead Valley fault, and developed bilaterally there, NNW to continue the main rupture but also SSE for 4 km forming a backward branch. We develop theoretical principles underlying such rupture transitions, partly from elastostatic stress analysis, and then simulate the Landers example numerically using a two‐dimensional elastodynamic boundary integral equation formulation incorporating slip‐weakening rupture. This reproduces the proposed backward branching mechanism based on realistic if simplified fault geometries, prestress orientation corresponding to the region, standard lab friction values for peak strength, and fracture energies characteristic of the Landers event. We also show that the seismic S ratio controls the jumpable distance and that curving of a fault toward its compressional side, like locally along the southeastern Homestead Valley fault, induces near‐tip increase of compressive normal stress that slows rupture propagation.
doi_str_mv 10.1029/2004JB003368
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28884711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28884711</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5790-7666e3b297f2f114a3b23a999629c8fdb3cb74f467142015e96143f6093fbba03</originalsourceid><addsrcrecordid>eNqNkM1OwzAQhC0EElXpjQfIBbgQWP_Ejo8U0UIpIEGBo-WkNhjStNgJ0LcnVSrghNjL7uGbWc0gtIvhCAORxwSAjfoAlPJ0A3UITnhMCJBN1AHM0hgIEduoF8ILNMMSzgB30MFA10UVZV6X-bMrnyJdTiNfL6ram2jqvMkr9-6q5Q7asroIprfeXXQ_OJucnsfjm-HF6ck41omQEAvOuaEZkcISizHTzU21lJITmad2mtE8E8wyLjAjgBMjOWbUcpDUZpkG2kX7re_Cz99qEyo1cyE3RaFLM6-DImmaMoHxP8CkqULIBjxswdzPQ_DGqoV3M-2XCoNaNad-N9fge2tfHXJd2FUxLvxouBTNe9JwtOU-XGGWf3qq0fC238SEVby4VblQmc9vlfavigsqEvV4PVRXlNLLh9GdmtAvphGIJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28503379</pqid></control><display><type>article</type><title>Fault branching and rupture directivity</title><source>Wiley-Blackwell AGU Digital Library</source><creator>Fliss, Sonia ; Bhat, Harsha S. ; Dmowska, Renata ; Rice, James R.</creator><creatorcontrib>Fliss, Sonia ; Bhat, Harsha S. ; Dmowska, Renata ; Rice, James R.</creatorcontrib><description>Could the directivity of a complex earthquake be inferred from the ruptured fault branches it created? Typically, branches develop in forward orientation, making acute angles relative to the propagation direction. Direct backward branching of the same style as the main rupture (e.g., both right lateral) is disallowed by the stress field at the rupture front. Here we propose another mechanism of backward branching. In that mechanism, rupture stops along one fault strand, radiates stress to a neighboring strand, nucleates there, and develops bilaterally, generating a backward branch. Such makes diagnosing directivity of a past earthquake difficult without detailed knowledge of the branching process. As a field example, in the Landers 1992 earthquake, rupture stopped at the northern end of the Kickapoo fault, jumped onto the Homestead Valley fault, and developed bilaterally there, NNW to continue the main rupture but also SSE for 4 km forming a backward branch. We develop theoretical principles underlying such rupture transitions, partly from elastostatic stress analysis, and then simulate the Landers example numerically using a two‐dimensional elastodynamic boundary integral equation formulation incorporating slip‐weakening rupture. This reproduces the proposed backward branching mechanism based on realistic if simplified fault geometries, prestress orientation corresponding to the region, standard lab friction values for peak strength, and fracture energies characteristic of the Landers event. We also show that the seismic S ratio controls the jumpable distance and that curving of a fault toward its compressional side, like locally along the southeastern Homestead Valley fault, induces near‐tip increase of compressive normal stress that slows rupture propagation.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2004JB003368</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; earthquakes ; Exact sciences and technology ; fault branching ; fracture dynamics</subject><ispartof>Journal of Geophysical Research. B. Solid Earth, 2005-06, Vol.110 (B6), p.B06312.1-n/a</ispartof><rights>Copyright 2005 by the American Geophysical Union.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5790-7666e3b297f2f114a3b23a999629c8fdb3cb74f467142015e96143f6093fbba03</citedby><cites>FETCH-LOGICAL-a5790-7666e3b297f2f114a3b23a999629c8fdb3cb74f467142015e96143f6093fbba03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2004JB003368$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2004JB003368$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16977112$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fliss, Sonia</creatorcontrib><creatorcontrib>Bhat, Harsha S.</creatorcontrib><creatorcontrib>Dmowska, Renata</creatorcontrib><creatorcontrib>Rice, James R.</creatorcontrib><title>Fault branching and rupture directivity</title><title>Journal of Geophysical Research. B. Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>Could the directivity of a complex earthquake be inferred from the ruptured fault branches it created? Typically, branches develop in forward orientation, making acute angles relative to the propagation direction. Direct backward branching of the same style as the main rupture (e.g., both right lateral) is disallowed by the stress field at the rupture front. Here we propose another mechanism of backward branching. In that mechanism, rupture stops along one fault strand, radiates stress to a neighboring strand, nucleates there, and develops bilaterally, generating a backward branch. Such makes diagnosing directivity of a past earthquake difficult without detailed knowledge of the branching process. As a field example, in the Landers 1992 earthquake, rupture stopped at the northern end of the Kickapoo fault, jumped onto the Homestead Valley fault, and developed bilaterally there, NNW to continue the main rupture but also SSE for 4 km forming a backward branch. We develop theoretical principles underlying such rupture transitions, partly from elastostatic stress analysis, and then simulate the Landers example numerically using a two‐dimensional elastodynamic boundary integral equation formulation incorporating slip‐weakening rupture. This reproduces the proposed backward branching mechanism based on realistic if simplified fault geometries, prestress orientation corresponding to the region, standard lab friction values for peak strength, and fracture energies characteristic of the Landers event. We also show that the seismic S ratio controls the jumpable distance and that curving of a fault toward its compressional side, like locally along the southeastern Homestead Valley fault, induces near‐tip increase of compressive normal stress that slows rupture propagation.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>earthquakes</subject><subject>Exact sciences and technology</subject><subject>fault branching</subject><subject>fracture dynamics</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkM1OwzAQhC0EElXpjQfIBbgQWP_Ejo8U0UIpIEGBo-WkNhjStNgJ0LcnVSrghNjL7uGbWc0gtIvhCAORxwSAjfoAlPJ0A3UITnhMCJBN1AHM0hgIEduoF8ILNMMSzgB30MFA10UVZV6X-bMrnyJdTiNfL6ram2jqvMkr9-6q5Q7asroIprfeXXQ_OJucnsfjm-HF6ck41omQEAvOuaEZkcISizHTzU21lJITmad2mtE8E8wyLjAjgBMjOWbUcpDUZpkG2kX7re_Cz99qEyo1cyE3RaFLM6-DImmaMoHxP8CkqULIBjxswdzPQ_DGqoV3M-2XCoNaNad-N9fge2tfHXJd2FUxLvxouBTNe9JwtOU-XGGWf3qq0fC238SEVby4VblQmc9vlfavigsqEvV4PVRXlNLLh9GdmtAvphGIJQ</recordid><startdate>200506</startdate><enddate>200506</enddate><creator>Fliss, Sonia</creator><creator>Bhat, Harsha S.</creator><creator>Dmowska, Renata</creator><creator>Rice, James R.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>200506</creationdate><title>Fault branching and rupture directivity</title><author>Fliss, Sonia ; Bhat, Harsha S. ; Dmowska, Renata ; Rice, James R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5790-7666e3b297f2f114a3b23a999629c8fdb3cb74f467142015e96143f6093fbba03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>earthquakes</topic><topic>Exact sciences and technology</topic><topic>fault branching</topic><topic>fracture dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fliss, Sonia</creatorcontrib><creatorcontrib>Bhat, Harsha S.</creatorcontrib><creatorcontrib>Dmowska, Renata</creatorcontrib><creatorcontrib>Rice, James R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fliss, Sonia</au><au>Bhat, Harsha S.</au><au>Dmowska, Renata</au><au>Rice, James R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault branching and rupture directivity</atitle><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2005-06</date><risdate>2005</risdate><volume>110</volume><issue>B6</issue><spage>B06312.1</spage><epage>n/a</epage><pages>B06312.1-n/a</pages><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>Could the directivity of a complex earthquake be inferred from the ruptured fault branches it created? Typically, branches develop in forward orientation, making acute angles relative to the propagation direction. Direct backward branching of the same style as the main rupture (e.g., both right lateral) is disallowed by the stress field at the rupture front. Here we propose another mechanism of backward branching. In that mechanism, rupture stops along one fault strand, radiates stress to a neighboring strand, nucleates there, and develops bilaterally, generating a backward branch. Such makes diagnosing directivity of a past earthquake difficult without detailed knowledge of the branching process. As a field example, in the Landers 1992 earthquake, rupture stopped at the northern end of the Kickapoo fault, jumped onto the Homestead Valley fault, and developed bilaterally there, NNW to continue the main rupture but also SSE for 4 km forming a backward branch. We develop theoretical principles underlying such rupture transitions, partly from elastostatic stress analysis, and then simulate the Landers example numerically using a two‐dimensional elastodynamic boundary integral equation formulation incorporating slip‐weakening rupture. This reproduces the proposed backward branching mechanism based on realistic if simplified fault geometries, prestress orientation corresponding to the region, standard lab friction values for peak strength, and fracture energies characteristic of the Landers event. We also show that the seismic S ratio controls the jumpable distance and that curving of a fault toward its compressional side, like locally along the southeastern Homestead Valley fault, induces near‐tip increase of compressive normal stress that slows rupture propagation.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2004JB003368</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. B. Solid Earth, 2005-06, Vol.110 (B6), p.B06312.1-n/a
issn 0148-0227
2156-2202
language eng
recordid cdi_proquest_miscellaneous_28884711
source Wiley-Blackwell AGU Digital Library
subjects Earth sciences
Earth, ocean, space
earthquakes
Exact sciences and technology
fault branching
fracture dynamics
title Fault branching and rupture directivity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20branching%20and%20rupture%20directivity&rft.jtitle=Journal%20of%20Geophysical%20Research.%20B.%20Solid%20Earth&rft.au=Fliss,%20Sonia&rft.date=2005-06&rft.volume=110&rft.issue=B6&rft.spage=B06312.1&rft.epage=n/a&rft.pages=B06312.1-n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2004JB003368&rft_dat=%3Cproquest_cross%3E28884711%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a5790-7666e3b297f2f114a3b23a999629c8fdb3cb74f467142015e96143f6093fbba03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28503379&rft_id=info:pmid/&rfr_iscdi=true