Loading…
Monte Carlo simulation on domain pattern and ferroelectric behaviors of relaxor ferroelectrics
The domain configuration and ferroelectric property of mode relaxor ferroelectrics (RFEs) are investigated by performing a two-dimensional Monte Carlo simulation based on the Ginzburg-Landau theory on ferroelectric phase transitions and the defect model as an approach to the electric dipole configur...
Saved in:
Published in: | Journal of materials science 2006, Vol.41 (1), p.163-175 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c427t-937e419d4630bcc9bc33af8f21a9b15050b0fbf9039a8d29ede717821e99837b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c427t-937e419d4630bcc9bc33af8f21a9b15050b0fbf9039a8d29ede717821e99837b3 |
container_end_page | 175 |
container_issue | 1 |
container_start_page | 163 |
container_title | Journal of materials science |
container_volume | 41 |
creator | Liu, J.-M Lau, S. T Chan, H. L. W Choy, C. L |
description | The domain configuration and ferroelectric property of mode relaxor ferroelectrics (RFEs) are investigated by performing a two-dimensional Monte Carlo simulation based on the Ginzburg-Landau theory on ferroelectric phase transitions and the defect model as an approach to the electric dipole configuration in relaxor ferroelectrics. The evolution of domain pattern and domain wall configuration with lattice defect concentration and temperature is simulated, predicting a typical two-phase coexisted microstructure consisting of ferroelectric regions embedded in the matrix of a paraelectric phase. The diffusive ferroelectric transitions in terms of the spontaneous polarization hysteresis and dielectric susceptibility as a function of temperature and defect concentration are successfully revealed by the simulation, demonstrating the applicability of the defect model and the simulation algorithm. A qualitative consistency between the simulated results and the properties of proton-irradiated ferroelectric copolymer is presented. |
doi_str_mv | 10.1007/s10853-005-6016-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28888296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28888296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-937e419d4630bcc9bc33af8f21a9b15050b0fbf9039a8d29ede717821e99837b3</originalsourceid><addsrcrecordid>eNp9kU9LxDAQxYMouK5-AE8GBPFSTSZtkxxl8R8oHnSvhrRNNEvbrEkr-u3NWi96cBiYw_zewLyH0CElZ5QQfh4pEQXLCCmyktAyY1toRgvOslwQto1mhABkkJd0F-3FuCIJ5EBn6Pne94PBCx1aj6PrxlYPzvc4deM77Xq81sNgQo9132BrQvCmNfUQXI0r86rfnQ8Re4uDafWHD7-RuI92rG6jOfiZc7S8unxa3GR3D9e3i4u7rM6BD5lk3ORUNnnJSFXXsqoZ01ZYoFpWtCAFqYitrCRMatGANI3hlAugRkrBeMXm6GS6uw7-bTRxUJ2LtWlb3Rs_RgUiFcgygaf_gslGoIKW3-jxH3Tlx9CnNxTkIEAUIFii6ETVwccYjFXr4DodPtMptYlGTdGo5LjaRKM2mqNJY7VX-iW4qJaPkHYpFihZTtkXxDuKjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428285283</pqid></control><display><type>article</type><title>Monte Carlo simulation on domain pattern and ferroelectric behaviors of relaxor ferroelectrics</title><source>Springer Link</source><creator>Liu, J.-M ; Lau, S. T ; Chan, H. L. W ; Choy, C. L</creator><creatorcontrib>Liu, J.-M ; Lau, S. T ; Chan, H. L. W ; Choy, C. L</creatorcontrib><description>The domain configuration and ferroelectric property of mode relaxor ferroelectrics (RFEs) are investigated by performing a two-dimensional Monte Carlo simulation based on the Ginzburg-Landau theory on ferroelectric phase transitions and the defect model as an approach to the electric dipole configuration in relaxor ferroelectrics. The evolution of domain pattern and domain wall configuration with lattice defect concentration and temperature is simulated, predicting a typical two-phase coexisted microstructure consisting of ferroelectric regions embedded in the matrix of a paraelectric phase. The diffusive ferroelectric transitions in terms of the spontaneous polarization hysteresis and dielectric susceptibility as a function of temperature and defect concentration are successfully revealed by the simulation, demonstrating the applicability of the defect model and the simulation algorithm. A qualitative consistency between the simulated results and the properties of proton-irradiated ferroelectric copolymer is presented.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-005-6016-3</identifier><language>eng</language><publisher>New York: Kluwer Academic Publishers</publisher><subject>Algorithms ; composite polymers ; Computer simulation ; Configurations ; Copolymers ; Crystal defects ; Defects ; Domain walls ; Electric dipoles ; Ferroelectric materials ; Ferroelectricity ; Ferroelectrics ; hysteresis ; Materials science ; Mathematical models ; microstructure ; Monte Carlo method ; Monte Carlo methods ; Monte Carlo simulation ; phase transition ; Phase transitions ; prediction ; Proton irradiation ; Relaxors ; simulation ; simulation models ; temperature</subject><ispartof>Journal of materials science, 2006, Vol.41 (1), p.163-175</ispartof><rights>Springer Science + Business Media, Inc. 2006.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-937e419d4630bcc9bc33af8f21a9b15050b0fbf9039a8d29ede717821e99837b3</citedby><cites>FETCH-LOGICAL-c427t-937e419d4630bcc9bc33af8f21a9b15050b0fbf9039a8d29ede717821e99837b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Liu, J.-M</creatorcontrib><creatorcontrib>Lau, S. T</creatorcontrib><creatorcontrib>Chan, H. L. W</creatorcontrib><creatorcontrib>Choy, C. L</creatorcontrib><title>Monte Carlo simulation on domain pattern and ferroelectric behaviors of relaxor ferroelectrics</title><title>Journal of materials science</title><description>The domain configuration and ferroelectric property of mode relaxor ferroelectrics (RFEs) are investigated by performing a two-dimensional Monte Carlo simulation based on the Ginzburg-Landau theory on ferroelectric phase transitions and the defect model as an approach to the electric dipole configuration in relaxor ferroelectrics. The evolution of domain pattern and domain wall configuration with lattice defect concentration and temperature is simulated, predicting a typical two-phase coexisted microstructure consisting of ferroelectric regions embedded in the matrix of a paraelectric phase. The diffusive ferroelectric transitions in terms of the spontaneous polarization hysteresis and dielectric susceptibility as a function of temperature and defect concentration are successfully revealed by the simulation, demonstrating the applicability of the defect model and the simulation algorithm. A qualitative consistency between the simulated results and the properties of proton-irradiated ferroelectric copolymer is presented.</description><subject>Algorithms</subject><subject>composite polymers</subject><subject>Computer simulation</subject><subject>Configurations</subject><subject>Copolymers</subject><subject>Crystal defects</subject><subject>Defects</subject><subject>Domain walls</subject><subject>Electric dipoles</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics</subject><subject>hysteresis</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>microstructure</subject><subject>Monte Carlo method</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>prediction</subject><subject>Proton irradiation</subject><subject>Relaxors</subject><subject>simulation</subject><subject>simulation models</subject><subject>temperature</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kU9LxDAQxYMouK5-AE8GBPFSTSZtkxxl8R8oHnSvhrRNNEvbrEkr-u3NWi96cBiYw_zewLyH0CElZ5QQfh4pEQXLCCmyktAyY1toRgvOslwQto1mhABkkJd0F-3FuCIJ5EBn6Pne94PBCx1aj6PrxlYPzvc4deM77Xq81sNgQo9132BrQvCmNfUQXI0r86rfnQ8Re4uDafWHD7-RuI92rG6jOfiZc7S8unxa3GR3D9e3i4u7rM6BD5lk3ORUNnnJSFXXsqoZ01ZYoFpWtCAFqYitrCRMatGANI3hlAugRkrBeMXm6GS6uw7-bTRxUJ2LtWlb3Rs_RgUiFcgygaf_gslGoIKW3-jxH3Tlx9CnNxTkIEAUIFii6ETVwccYjFXr4DodPtMptYlGTdGo5LjaRKM2mqNJY7VX-iW4qJaPkHYpFihZTtkXxDuKjg</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Liu, J.-M</creator><creator>Lau, S. T</creator><creator>Chan, H. L. W</creator><creator>Choy, C. L</creator><general>Kluwer Academic Publishers</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7SC</scope><scope>7U5</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2006</creationdate><title>Monte Carlo simulation on domain pattern and ferroelectric behaviors of relaxor ferroelectrics</title><author>Liu, J.-M ; Lau, S. T ; Chan, H. L. W ; Choy, C. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-937e419d4630bcc9bc33af8f21a9b15050b0fbf9039a8d29ede717821e99837b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>composite polymers</topic><topic>Computer simulation</topic><topic>Configurations</topic><topic>Copolymers</topic><topic>Crystal defects</topic><topic>Defects</topic><topic>Domain walls</topic><topic>Electric dipoles</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics</topic><topic>hysteresis</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>microstructure</topic><topic>Monte Carlo method</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>prediction</topic><topic>Proton irradiation</topic><topic>Relaxors</topic><topic>simulation</topic><topic>simulation models</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, J.-M</creatorcontrib><creatorcontrib>Lau, S. T</creatorcontrib><creatorcontrib>Chan, H. L. W</creatorcontrib><creatorcontrib>Choy, C. L</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, J.-M</au><au>Lau, S. T</au><au>Chan, H. L. W</au><au>Choy, C. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo simulation on domain pattern and ferroelectric behaviors of relaxor ferroelectrics</atitle><jtitle>Journal of materials science</jtitle><date>2006</date><risdate>2006</risdate><volume>41</volume><issue>1</issue><spage>163</spage><epage>175</epage><pages>163-175</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The domain configuration and ferroelectric property of mode relaxor ferroelectrics (RFEs) are investigated by performing a two-dimensional Monte Carlo simulation based on the Ginzburg-Landau theory on ferroelectric phase transitions and the defect model as an approach to the electric dipole configuration in relaxor ferroelectrics. The evolution of domain pattern and domain wall configuration with lattice defect concentration and temperature is simulated, predicting a typical two-phase coexisted microstructure consisting of ferroelectric regions embedded in the matrix of a paraelectric phase. The diffusive ferroelectric transitions in terms of the spontaneous polarization hysteresis and dielectric susceptibility as a function of temperature and defect concentration are successfully revealed by the simulation, demonstrating the applicability of the defect model and the simulation algorithm. A qualitative consistency between the simulated results and the properties of proton-irradiated ferroelectric copolymer is presented.</abstract><cop>New York</cop><pub>Kluwer Academic Publishers</pub><doi>10.1007/s10853-005-6016-3</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2006, Vol.41 (1), p.163-175 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_28888296 |
source | Springer Link |
subjects | Algorithms composite polymers Computer simulation Configurations Copolymers Crystal defects Defects Domain walls Electric dipoles Ferroelectric materials Ferroelectricity Ferroelectrics hysteresis Materials science Mathematical models microstructure Monte Carlo method Monte Carlo methods Monte Carlo simulation phase transition Phase transitions prediction Proton irradiation Relaxors simulation simulation models temperature |
title | Monte Carlo simulation on domain pattern and ferroelectric behaviors of relaxor ferroelectrics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20simulation%20on%20domain%20pattern%20and%20ferroelectric%20behaviors%20of%20relaxor%20ferroelectrics&rft.jtitle=Journal%20of%20materials%20science&rft.au=Liu,%20J.-M&rft.date=2006&rft.volume=41&rft.issue=1&rft.spage=163&rft.epage=175&rft.pages=163-175&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-005-6016-3&rft_dat=%3Cproquest_cross%3E28888296%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-937e419d4630bcc9bc33af8f21a9b15050b0fbf9039a8d29ede717821e99837b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2428285283&rft_id=info:pmid/&rfr_iscdi=true |