Loading…

Monte Carlo simulation on domain pattern and ferroelectric behaviors of relaxor ferroelectrics

The domain configuration and ferroelectric property of mode relaxor ferroelectrics (RFEs) are investigated by performing a two-dimensional Monte Carlo simulation based on the Ginzburg-Landau theory on ferroelectric phase transitions and the defect model as an approach to the electric dipole configur...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2006, Vol.41 (1), p.163-175
Main Authors: Liu, J.-M, Lau, S. T, Chan, H. L. W, Choy, C. L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-937e419d4630bcc9bc33af8f21a9b15050b0fbf9039a8d29ede717821e99837b3
cites cdi_FETCH-LOGICAL-c427t-937e419d4630bcc9bc33af8f21a9b15050b0fbf9039a8d29ede717821e99837b3
container_end_page 175
container_issue 1
container_start_page 163
container_title Journal of materials science
container_volume 41
creator Liu, J.-M
Lau, S. T
Chan, H. L. W
Choy, C. L
description The domain configuration and ferroelectric property of mode relaxor ferroelectrics (RFEs) are investigated by performing a two-dimensional Monte Carlo simulation based on the Ginzburg-Landau theory on ferroelectric phase transitions and the defect model as an approach to the electric dipole configuration in relaxor ferroelectrics. The evolution of domain pattern and domain wall configuration with lattice defect concentration and temperature is simulated, predicting a typical two-phase coexisted microstructure consisting of ferroelectric regions embedded in the matrix of a paraelectric phase. The diffusive ferroelectric transitions in terms of the spontaneous polarization hysteresis and dielectric susceptibility as a function of temperature and defect concentration are successfully revealed by the simulation, demonstrating the applicability of the defect model and the simulation algorithm. A qualitative consistency between the simulated results and the properties of proton-irradiated ferroelectric copolymer is presented.
doi_str_mv 10.1007/s10853-005-6016-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28888296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28888296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-937e419d4630bcc9bc33af8f21a9b15050b0fbf9039a8d29ede717821e99837b3</originalsourceid><addsrcrecordid>eNp9kU9LxDAQxYMouK5-AE8GBPFSTSZtkxxl8R8oHnSvhrRNNEvbrEkr-u3NWi96cBiYw_zewLyH0CElZ5QQfh4pEQXLCCmyktAyY1toRgvOslwQto1mhABkkJd0F-3FuCIJ5EBn6Pne94PBCx1aj6PrxlYPzvc4deM77Xq81sNgQo9132BrQvCmNfUQXI0r86rfnQ8Re4uDafWHD7-RuI92rG6jOfiZc7S8unxa3GR3D9e3i4u7rM6BD5lk3ORUNnnJSFXXsqoZ01ZYoFpWtCAFqYitrCRMatGANI3hlAugRkrBeMXm6GS6uw7-bTRxUJ2LtWlb3Rs_RgUiFcgygaf_gslGoIKW3-jxH3Tlx9CnNxTkIEAUIFii6ETVwccYjFXr4DodPtMptYlGTdGo5LjaRKM2mqNJY7VX-iW4qJaPkHYpFihZTtkXxDuKjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428285283</pqid></control><display><type>article</type><title>Monte Carlo simulation on domain pattern and ferroelectric behaviors of relaxor ferroelectrics</title><source>Springer Link</source><creator>Liu, J.-M ; Lau, S. T ; Chan, H. L. W ; Choy, C. L</creator><creatorcontrib>Liu, J.-M ; Lau, S. T ; Chan, H. L. W ; Choy, C. L</creatorcontrib><description>The domain configuration and ferroelectric property of mode relaxor ferroelectrics (RFEs) are investigated by performing a two-dimensional Monte Carlo simulation based on the Ginzburg-Landau theory on ferroelectric phase transitions and the defect model as an approach to the electric dipole configuration in relaxor ferroelectrics. The evolution of domain pattern and domain wall configuration with lattice defect concentration and temperature is simulated, predicting a typical two-phase coexisted microstructure consisting of ferroelectric regions embedded in the matrix of a paraelectric phase. The diffusive ferroelectric transitions in terms of the spontaneous polarization hysteresis and dielectric susceptibility as a function of temperature and defect concentration are successfully revealed by the simulation, demonstrating the applicability of the defect model and the simulation algorithm. A qualitative consistency between the simulated results and the properties of proton-irradiated ferroelectric copolymer is presented.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-005-6016-3</identifier><language>eng</language><publisher>New York: Kluwer Academic Publishers</publisher><subject>Algorithms ; composite polymers ; Computer simulation ; Configurations ; Copolymers ; Crystal defects ; Defects ; Domain walls ; Electric dipoles ; Ferroelectric materials ; Ferroelectricity ; Ferroelectrics ; hysteresis ; Materials science ; Mathematical models ; microstructure ; Monte Carlo method ; Monte Carlo methods ; Monte Carlo simulation ; phase transition ; Phase transitions ; prediction ; Proton irradiation ; Relaxors ; simulation ; simulation models ; temperature</subject><ispartof>Journal of materials science, 2006, Vol.41 (1), p.163-175</ispartof><rights>Springer Science + Business Media, Inc. 2006.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-937e419d4630bcc9bc33af8f21a9b15050b0fbf9039a8d29ede717821e99837b3</citedby><cites>FETCH-LOGICAL-c427t-937e419d4630bcc9bc33af8f21a9b15050b0fbf9039a8d29ede717821e99837b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Liu, J.-M</creatorcontrib><creatorcontrib>Lau, S. T</creatorcontrib><creatorcontrib>Chan, H. L. W</creatorcontrib><creatorcontrib>Choy, C. L</creatorcontrib><title>Monte Carlo simulation on domain pattern and ferroelectric behaviors of relaxor ferroelectrics</title><title>Journal of materials science</title><description>The domain configuration and ferroelectric property of mode relaxor ferroelectrics (RFEs) are investigated by performing a two-dimensional Monte Carlo simulation based on the Ginzburg-Landau theory on ferroelectric phase transitions and the defect model as an approach to the electric dipole configuration in relaxor ferroelectrics. The evolution of domain pattern and domain wall configuration with lattice defect concentration and temperature is simulated, predicting a typical two-phase coexisted microstructure consisting of ferroelectric regions embedded in the matrix of a paraelectric phase. The diffusive ferroelectric transitions in terms of the spontaneous polarization hysteresis and dielectric susceptibility as a function of temperature and defect concentration are successfully revealed by the simulation, demonstrating the applicability of the defect model and the simulation algorithm. A qualitative consistency between the simulated results and the properties of proton-irradiated ferroelectric copolymer is presented.</description><subject>Algorithms</subject><subject>composite polymers</subject><subject>Computer simulation</subject><subject>Configurations</subject><subject>Copolymers</subject><subject>Crystal defects</subject><subject>Defects</subject><subject>Domain walls</subject><subject>Electric dipoles</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics</subject><subject>hysteresis</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>microstructure</subject><subject>Monte Carlo method</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>phase transition</subject><subject>Phase transitions</subject><subject>prediction</subject><subject>Proton irradiation</subject><subject>Relaxors</subject><subject>simulation</subject><subject>simulation models</subject><subject>temperature</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kU9LxDAQxYMouK5-AE8GBPFSTSZtkxxl8R8oHnSvhrRNNEvbrEkr-u3NWi96cBiYw_zewLyH0CElZ5QQfh4pEQXLCCmyktAyY1toRgvOslwQto1mhABkkJd0F-3FuCIJ5EBn6Pne94PBCx1aj6PrxlYPzvc4deM77Xq81sNgQo9132BrQvCmNfUQXI0r86rfnQ8Re4uDafWHD7-RuI92rG6jOfiZc7S8unxa3GR3D9e3i4u7rM6BD5lk3ORUNnnJSFXXsqoZ01ZYoFpWtCAFqYitrCRMatGANI3hlAugRkrBeMXm6GS6uw7-bTRxUJ2LtWlb3Rs_RgUiFcgygaf_gslGoIKW3-jxH3Tlx9CnNxTkIEAUIFii6ETVwccYjFXr4DodPtMptYlGTdGo5LjaRKM2mqNJY7VX-iW4qJaPkHYpFihZTtkXxDuKjg</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Liu, J.-M</creator><creator>Lau, S. T</creator><creator>Chan, H. L. W</creator><creator>Choy, C. L</creator><general>Kluwer Academic Publishers</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7SC</scope><scope>7U5</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2006</creationdate><title>Monte Carlo simulation on domain pattern and ferroelectric behaviors of relaxor ferroelectrics</title><author>Liu, J.-M ; Lau, S. T ; Chan, H. L. W ; Choy, C. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-937e419d4630bcc9bc33af8f21a9b15050b0fbf9039a8d29ede717821e99837b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>composite polymers</topic><topic>Computer simulation</topic><topic>Configurations</topic><topic>Copolymers</topic><topic>Crystal defects</topic><topic>Defects</topic><topic>Domain walls</topic><topic>Electric dipoles</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics</topic><topic>hysteresis</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>microstructure</topic><topic>Monte Carlo method</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>phase transition</topic><topic>Phase transitions</topic><topic>prediction</topic><topic>Proton irradiation</topic><topic>Relaxors</topic><topic>simulation</topic><topic>simulation models</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, J.-M</creatorcontrib><creatorcontrib>Lau, S. T</creatorcontrib><creatorcontrib>Chan, H. L. W</creatorcontrib><creatorcontrib>Choy, C. L</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, J.-M</au><au>Lau, S. T</au><au>Chan, H. L. W</au><au>Choy, C. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo simulation on domain pattern and ferroelectric behaviors of relaxor ferroelectrics</atitle><jtitle>Journal of materials science</jtitle><date>2006</date><risdate>2006</risdate><volume>41</volume><issue>1</issue><spage>163</spage><epage>175</epage><pages>163-175</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The domain configuration and ferroelectric property of mode relaxor ferroelectrics (RFEs) are investigated by performing a two-dimensional Monte Carlo simulation based on the Ginzburg-Landau theory on ferroelectric phase transitions and the defect model as an approach to the electric dipole configuration in relaxor ferroelectrics. The evolution of domain pattern and domain wall configuration with lattice defect concentration and temperature is simulated, predicting a typical two-phase coexisted microstructure consisting of ferroelectric regions embedded in the matrix of a paraelectric phase. The diffusive ferroelectric transitions in terms of the spontaneous polarization hysteresis and dielectric susceptibility as a function of temperature and defect concentration are successfully revealed by the simulation, demonstrating the applicability of the defect model and the simulation algorithm. A qualitative consistency between the simulated results and the properties of proton-irradiated ferroelectric copolymer is presented.</abstract><cop>New York</cop><pub>Kluwer Academic Publishers</pub><doi>10.1007/s10853-005-6016-3</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2006, Vol.41 (1), p.163-175
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_28888296
source Springer Link
subjects Algorithms
composite polymers
Computer simulation
Configurations
Copolymers
Crystal defects
Defects
Domain walls
Electric dipoles
Ferroelectric materials
Ferroelectricity
Ferroelectrics
hysteresis
Materials science
Mathematical models
microstructure
Monte Carlo method
Monte Carlo methods
Monte Carlo simulation
phase transition
Phase transitions
prediction
Proton irradiation
Relaxors
simulation
simulation models
temperature
title Monte Carlo simulation on domain pattern and ferroelectric behaviors of relaxor ferroelectrics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20simulation%20on%20domain%20pattern%20and%20ferroelectric%20behaviors%20of%20relaxor%20ferroelectrics&rft.jtitle=Journal%20of%20materials%20science&rft.au=Liu,%20J.-M&rft.date=2006&rft.volume=41&rft.issue=1&rft.spage=163&rft.epage=175&rft.pages=163-175&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-005-6016-3&rft_dat=%3Cproquest_cross%3E28888296%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-937e419d4630bcc9bc33af8f21a9b15050b0fbf9039a8d29ede717821e99837b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2428285283&rft_id=info:pmid/&rfr_iscdi=true