Loading…
A 64-Mb embedded FRAM utilizing a 130-nm 5LM Cu/FSG logic process
A low-voltage (1.3 V) 64-Mb ferroelectric random access memory (FRAM) using a one-transistor one-capacitor (1T1C) cell has been fabricated using a state-of-the-art 130-nm transistor and a five-level Cu/flouro-silicate glass (FSG) interconnect process. Only two additional masks are required for integ...
Saved in:
Published in: | IEEE journal of solid-state circuits 2004-04, Vol.39 (4), p.667-677 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A low-voltage (1.3 V) 64-Mb ferroelectric random access memory (FRAM) using a one-transistor one-capacitor (1T1C) cell has been fabricated using a state-of-the-art 130-nm transistor and a five-level Cu/flouro-silicate glass (FSG) interconnect process. Only two additional masks are required for integration of the ferroelectric module into a single-gate-oxide low-voltage logic process. Novel overwrite sense amplifier and programmable ferroelectric reference generation schemes are employed for fast reliable read-write cycle operation. Address access time for the memory is less than 30 ns while consuming less than 0.8 mW/MHz at 1.37 V. An embedded FRAM (eFRAM) density of 1.13 Mb/mm/sup 2/ is achieved with a cell size of 0.54 /spl mu/m/sup 2/ and capacitor size of 0.25 /spl mu/m/sup 2/. |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2004.825241 |