Loading…
A Bayesian method for probable surface reconstruction and decimation
We present a Bayesian technique for the reconstruction and subsequent decimation of 3D surface models from noisy sensor data. The method uses oriented probabilistic models of the measurement noise and combines them with feature-enhancing prior probabilities over 3D surfaces. When applied to surface...
Saved in:
Published in: | ACM transactions on graphics 2006-01, Vol.25 (1), p.39-59 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c202t-4d7a60fecf60bb7c5d8f9575d4fb5e343b7ff2a162d901206f052b48fb59813 |
---|---|
cites | cdi_FETCH-LOGICAL-c202t-4d7a60fecf60bb7c5d8f9575d4fb5e343b7ff2a162d901206f052b48fb59813 |
container_end_page | 59 |
container_issue | 1 |
container_start_page | 39 |
container_title | ACM transactions on graphics |
container_volume | 25 |
creator | Diebel, James R. Thrun, Sebastian Brünig, Michael |
description | We present a Bayesian technique for the reconstruction and subsequent decimation of 3D surface models from noisy sensor data. The method uses oriented probabilistic models of the measurement noise and combines them with feature-enhancing prior probabilities over 3D surfaces. When applied to surface reconstruction, the method simultaneously smooths noisy regions while enhancing features such as corners. When applied to surface decimation, it finds models that closely approximate the original mesh when rendered. The method is applied in the context of computer animation where it finds decimations that minimize the visual error even under nonrigid deformations. |
doi_str_mv | 10.1145/1122501.1122504 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28891512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28891512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c202t-4d7a60fecf60bb7c5d8f9575d4fb5e343b7ff2a162d901206f052b48fb59813</originalsourceid><addsrcrecordid>eNotkMtLw0AYxBdRsFbPXvfkLfb79pkca31CwYPewz4xkmbrbnLof29Ke_oxzDAMQ8g9wiOikCtExiTg44nigixQSl1prupLsgDNoQIOeE1uSvkFACWEWpDnNX0yh1A6M9BdGH-SpzFlus_JGtsHWqYcjQs0B5eGMubJjV0aqBk89cF1O3OUt-Qqmr6EuzOX5Ov15XvzXm0_3z42623lGLCxEl4bBTG4qMBa7aSvYyO19CJaGbjgVsfIDCrmG0AGKoJkVtSz29TIl-Th1DqP-5tCGdtdV1zoezOENJWW1XWDEtkcXJ2CLqdScojtPs9L86FFaI9fteevzhT8HwutW8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28891512</pqid></control><display><type>article</type><title>A Bayesian method for probable surface reconstruction and decimation</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Diebel, James R. ; Thrun, Sebastian ; Brünig, Michael</creator><creatorcontrib>Diebel, James R. ; Thrun, Sebastian ; Brünig, Michael</creatorcontrib><description>We present a Bayesian technique for the reconstruction and subsequent decimation of 3D surface models from noisy sensor data. The method uses oriented probabilistic models of the measurement noise and combines them with feature-enhancing prior probabilities over 3D surfaces. When applied to surface reconstruction, the method simultaneously smooths noisy regions while enhancing features such as corners. When applied to surface decimation, it finds models that closely approximate the original mesh when rendered. The method is applied in the context of computer animation where it finds decimations that minimize the visual error even under nonrigid deformations.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/1122501.1122504</identifier><language>eng</language><ispartof>ACM transactions on graphics, 2006-01, Vol.25 (1), p.39-59</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c202t-4d7a60fecf60bb7c5d8f9575d4fb5e343b7ff2a162d901206f052b48fb59813</citedby><cites>FETCH-LOGICAL-c202t-4d7a60fecf60bb7c5d8f9575d4fb5e343b7ff2a162d901206f052b48fb59813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Diebel, James R.</creatorcontrib><creatorcontrib>Thrun, Sebastian</creatorcontrib><creatorcontrib>Brünig, Michael</creatorcontrib><title>A Bayesian method for probable surface reconstruction and decimation</title><title>ACM transactions on graphics</title><description>We present a Bayesian technique for the reconstruction and subsequent decimation of 3D surface models from noisy sensor data. The method uses oriented probabilistic models of the measurement noise and combines them with feature-enhancing prior probabilities over 3D surfaces. When applied to surface reconstruction, the method simultaneously smooths noisy regions while enhancing features such as corners. When applied to surface decimation, it finds models that closely approximate the original mesh when rendered. The method is applied in the context of computer animation where it finds decimations that minimize the visual error even under nonrigid deformations.</description><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNotkMtLw0AYxBdRsFbPXvfkLfb79pkca31CwYPewz4xkmbrbnLof29Ke_oxzDAMQ8g9wiOikCtExiTg44nigixQSl1prupLsgDNoQIOeE1uSvkFACWEWpDnNX0yh1A6M9BdGH-SpzFlus_JGtsHWqYcjQs0B5eGMubJjV0aqBk89cF1O3OUt-Qqmr6EuzOX5Ov15XvzXm0_3z42623lGLCxEl4bBTG4qMBa7aSvYyO19CJaGbjgVsfIDCrmG0AGKoJkVtSz29TIl-Th1DqP-5tCGdtdV1zoezOENJWW1XWDEtkcXJ2CLqdScojtPs9L86FFaI9fteevzhT8HwutW8g</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Diebel, James R.</creator><creator>Thrun, Sebastian</creator><creator>Brünig, Michael</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200601</creationdate><title>A Bayesian method for probable surface reconstruction and decimation</title><author>Diebel, James R. ; Thrun, Sebastian ; Brünig, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c202t-4d7a60fecf60bb7c5d8f9575d4fb5e343b7ff2a162d901206f052b48fb59813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diebel, James R.</creatorcontrib><creatorcontrib>Thrun, Sebastian</creatorcontrib><creatorcontrib>Brünig, Michael</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diebel, James R.</au><au>Thrun, Sebastian</au><au>Brünig, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian method for probable surface reconstruction and decimation</atitle><jtitle>ACM transactions on graphics</jtitle><date>2006-01</date><risdate>2006</risdate><volume>25</volume><issue>1</issue><spage>39</spage><epage>59</epage><pages>39-59</pages><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>We present a Bayesian technique for the reconstruction and subsequent decimation of 3D surface models from noisy sensor data. The method uses oriented probabilistic models of the measurement noise and combines them with feature-enhancing prior probabilities over 3D surfaces. When applied to surface reconstruction, the method simultaneously smooths noisy regions while enhancing features such as corners. When applied to surface decimation, it finds models that closely approximate the original mesh when rendered. The method is applied in the context of computer animation where it finds decimations that minimize the visual error even under nonrigid deformations.</abstract><doi>10.1145/1122501.1122504</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-0301 |
ispartof | ACM transactions on graphics, 2006-01, Vol.25 (1), p.39-59 |
issn | 0730-0301 1557-7368 |
language | eng |
recordid | cdi_proquest_miscellaneous_28891512 |
source | Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
title | A Bayesian method for probable surface reconstruction and decimation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A07%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20method%20for%20probable%20surface%20reconstruction%20and%20decimation&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=Diebel,%20James%20R.&rft.date=2006-01&rft.volume=25&rft.issue=1&rft.spage=39&rft.epage=59&rft.pages=39-59&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/1122501.1122504&rft_dat=%3Cproquest_cross%3E28891512%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c202t-4d7a60fecf60bb7c5d8f9575d4fb5e343b7ff2a162d901206f052b48fb59813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28891512&rft_id=info:pmid/&rfr_iscdi=true |