Loading…

A Bayesian method for probable surface reconstruction and decimation

We present a Bayesian technique for the reconstruction and subsequent decimation of 3D surface models from noisy sensor data. The method uses oriented probabilistic models of the measurement noise and combines them with feature-enhancing prior probabilities over 3D surfaces. When applied to surface...

Full description

Saved in:
Bibliographic Details
Published in:ACM transactions on graphics 2006-01, Vol.25 (1), p.39-59
Main Authors: Diebel, James R., Thrun, Sebastian, Brünig, Michael
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c202t-4d7a60fecf60bb7c5d8f9575d4fb5e343b7ff2a162d901206f052b48fb59813
cites cdi_FETCH-LOGICAL-c202t-4d7a60fecf60bb7c5d8f9575d4fb5e343b7ff2a162d901206f052b48fb59813
container_end_page 59
container_issue 1
container_start_page 39
container_title ACM transactions on graphics
container_volume 25
creator Diebel, James R.
Thrun, Sebastian
Brünig, Michael
description We present a Bayesian technique for the reconstruction and subsequent decimation of 3D surface models from noisy sensor data. The method uses oriented probabilistic models of the measurement noise and combines them with feature-enhancing prior probabilities over 3D surfaces. When applied to surface reconstruction, the method simultaneously smooths noisy regions while enhancing features such as corners. When applied to surface decimation, it finds models that closely approximate the original mesh when rendered. The method is applied in the context of computer animation where it finds decimations that minimize the visual error even under nonrigid deformations.
doi_str_mv 10.1145/1122501.1122504
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28891512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28891512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c202t-4d7a60fecf60bb7c5d8f9575d4fb5e343b7ff2a162d901206f052b48fb59813</originalsourceid><addsrcrecordid>eNotkMtLw0AYxBdRsFbPXvfkLfb79pkca31CwYPewz4xkmbrbnLof29Ke_oxzDAMQ8g9wiOikCtExiTg44nigixQSl1prupLsgDNoQIOeE1uSvkFACWEWpDnNX0yh1A6M9BdGH-SpzFlus_JGtsHWqYcjQs0B5eGMubJjV0aqBk89cF1O3OUt-Qqmr6EuzOX5Ov15XvzXm0_3z42623lGLCxEl4bBTG4qMBa7aSvYyO19CJaGbjgVsfIDCrmG0AGKoJkVtSz29TIl-Th1DqP-5tCGdtdV1zoezOENJWW1XWDEtkcXJ2CLqdScojtPs9L86FFaI9fteevzhT8HwutW8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28891512</pqid></control><display><type>article</type><title>A Bayesian method for probable surface reconstruction and decimation</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Diebel, James R. ; Thrun, Sebastian ; Brünig, Michael</creator><creatorcontrib>Diebel, James R. ; Thrun, Sebastian ; Brünig, Michael</creatorcontrib><description>We present a Bayesian technique for the reconstruction and subsequent decimation of 3D surface models from noisy sensor data. The method uses oriented probabilistic models of the measurement noise and combines them with feature-enhancing prior probabilities over 3D surfaces. When applied to surface reconstruction, the method simultaneously smooths noisy regions while enhancing features such as corners. When applied to surface decimation, it finds models that closely approximate the original mesh when rendered. The method is applied in the context of computer animation where it finds decimations that minimize the visual error even under nonrigid deformations.</description><identifier>ISSN: 0730-0301</identifier><identifier>EISSN: 1557-7368</identifier><identifier>DOI: 10.1145/1122501.1122504</identifier><language>eng</language><ispartof>ACM transactions on graphics, 2006-01, Vol.25 (1), p.39-59</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c202t-4d7a60fecf60bb7c5d8f9575d4fb5e343b7ff2a162d901206f052b48fb59813</citedby><cites>FETCH-LOGICAL-c202t-4d7a60fecf60bb7c5d8f9575d4fb5e343b7ff2a162d901206f052b48fb59813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Diebel, James R.</creatorcontrib><creatorcontrib>Thrun, Sebastian</creatorcontrib><creatorcontrib>Brünig, Michael</creatorcontrib><title>A Bayesian method for probable surface reconstruction and decimation</title><title>ACM transactions on graphics</title><description>We present a Bayesian technique for the reconstruction and subsequent decimation of 3D surface models from noisy sensor data. The method uses oriented probabilistic models of the measurement noise and combines them with feature-enhancing prior probabilities over 3D surfaces. When applied to surface reconstruction, the method simultaneously smooths noisy regions while enhancing features such as corners. When applied to surface decimation, it finds models that closely approximate the original mesh when rendered. The method is applied in the context of computer animation where it finds decimations that minimize the visual error even under nonrigid deformations.</description><issn>0730-0301</issn><issn>1557-7368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNotkMtLw0AYxBdRsFbPXvfkLfb79pkca31CwYPewz4xkmbrbnLof29Ke_oxzDAMQ8g9wiOikCtExiTg44nigixQSl1prupLsgDNoQIOeE1uSvkFACWEWpDnNX0yh1A6M9BdGH-SpzFlus_JGtsHWqYcjQs0B5eGMubJjV0aqBk89cF1O3OUt-Qqmr6EuzOX5Ov15XvzXm0_3z42623lGLCxEl4bBTG4qMBa7aSvYyO19CJaGbjgVsfIDCrmG0AGKoJkVtSz29TIl-Th1DqP-5tCGdtdV1zoezOENJWW1XWDEtkcXJ2CLqdScojtPs9L86FFaI9fteevzhT8HwutW8g</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Diebel, James R.</creator><creator>Thrun, Sebastian</creator><creator>Brünig, Michael</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200601</creationdate><title>A Bayesian method for probable surface reconstruction and decimation</title><author>Diebel, James R. ; Thrun, Sebastian ; Brünig, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c202t-4d7a60fecf60bb7c5d8f9575d4fb5e343b7ff2a162d901206f052b48fb59813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diebel, James R.</creatorcontrib><creatorcontrib>Thrun, Sebastian</creatorcontrib><creatorcontrib>Brünig, Michael</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diebel, James R.</au><au>Thrun, Sebastian</au><au>Brünig, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian method for probable surface reconstruction and decimation</atitle><jtitle>ACM transactions on graphics</jtitle><date>2006-01</date><risdate>2006</risdate><volume>25</volume><issue>1</issue><spage>39</spage><epage>59</epage><pages>39-59</pages><issn>0730-0301</issn><eissn>1557-7368</eissn><abstract>We present a Bayesian technique for the reconstruction and subsequent decimation of 3D surface models from noisy sensor data. The method uses oriented probabilistic models of the measurement noise and combines them with feature-enhancing prior probabilities over 3D surfaces. When applied to surface reconstruction, the method simultaneously smooths noisy regions while enhancing features such as corners. When applied to surface decimation, it finds models that closely approximate the original mesh when rendered. The method is applied in the context of computer animation where it finds decimations that minimize the visual error even under nonrigid deformations.</abstract><doi>10.1145/1122501.1122504</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0730-0301
ispartof ACM transactions on graphics, 2006-01, Vol.25 (1), p.39-59
issn 0730-0301
1557-7368
language eng
recordid cdi_proquest_miscellaneous_28891512
source Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
title A Bayesian method for probable surface reconstruction and decimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A07%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20method%20for%20probable%20surface%20reconstruction%20and%20decimation&rft.jtitle=ACM%20transactions%20on%20graphics&rft.au=Diebel,%20James%20R.&rft.date=2006-01&rft.volume=25&rft.issue=1&rft.spage=39&rft.epage=59&rft.pages=39-59&rft.issn=0730-0301&rft.eissn=1557-7368&rft_id=info:doi/10.1145/1122501.1122504&rft_dat=%3Cproquest_cross%3E28891512%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c202t-4d7a60fecf60bb7c5d8f9575d4fb5e343b7ff2a162d901206f052b48fb59813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28891512&rft_id=info:pmid/&rfr_iscdi=true