Loading…

A Bayesian approach to acute coronary occlusion

In the STEMI paradigm, the disease (acute coronary occlusion) is defined and named after one element (ST elevation, without regard to the remainder of the QRST) of one imperfect test (the ECG). This leads to delayed reperfusion for patients with acute coronary occlusion whose ECGs don't meet ST...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electrocardiology 2023-11, Vol.81, p.300-302
Main Authors: McLaren, Jesse T T, Smith, Stephen W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c262t-d05a86514ea659cb9afd6a6293cc05d08571593c9331fb73f4bfb9a3a2ec90c3
container_end_page 302
container_issue
container_start_page 300
container_title Journal of electrocardiology
container_volume 81
creator McLaren, Jesse T T
Smith, Stephen W
description In the STEMI paradigm, the disease (acute coronary occlusion) is defined and named after one element (ST elevation, without regard to the remainder of the QRST) of one imperfect test (the ECG). This leads to delayed reperfusion for patients with acute coronary occlusion whose ECGs don't meet STEMI criteria. In this editorial, we elaborate on the article by Jose Nunes de Alencar Neto about applying Bayesian reasoning to ECG interpretation. The Occlusion MI (OMI) paradigm offers evidencebased advances in ECG interpretation, expert-trained artificial intelligence, and a paradigm shift that incorporates a Bayesian approach to acute coronary occlusion.
doi_str_mv 10.1016/j.jelectrocard.2023.10.011
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2889240108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889240108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-d05a86514ea659cb9afd6a6293cc05d08571593c9331fb73f4bfb9a3a2ec90c3</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EoqXwCijixCXp2o4Tm1up-JMqcendcjaOSJTGxU4OfXtctSBOq9XM7I4-Qh4oZBRoseyyzvYWR-_Q-DpjwHgUMqD0gsyp4CyVOYdLMgdgLIWSFzNyE0IHAIqV7JrMeKkElYzNyXKVPJuDDa0ZErPfe2fwKxldYnAabYLOu8H4Q-IQ-ym0brglV43pg707zwXZvr5s1-_p5vPtY73apMgKNqY1CCMLQXNrCqGwUqapC1MwxRFB1CBFSUVcFOe0qUre5FUTTdwwiwqQL8jj6Wxs9D3ZMOpdG9D2vRmsm4JmUiqWAwUZrU8nK3oXgreN3vt2F0trCvrIS3f6Py995HXUIq8Yvj__maqdrf-iv4D4D5i5amM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889240108</pqid></control><display><type>article</type><title>A Bayesian approach to acute coronary occlusion</title><source>ScienceDirect Freedom Collection</source><creator>McLaren, Jesse T T ; Smith, Stephen W</creator><creatorcontrib>McLaren, Jesse T T ; Smith, Stephen W</creatorcontrib><description>In the STEMI paradigm, the disease (acute coronary occlusion) is defined and named after one element (ST elevation, without regard to the remainder of the QRST) of one imperfect test (the ECG). This leads to delayed reperfusion for patients with acute coronary occlusion whose ECGs don't meet STEMI criteria. In this editorial, we elaborate on the article by Jose Nunes de Alencar Neto about applying Bayesian reasoning to ECG interpretation. The Occlusion MI (OMI) paradigm offers evidencebased advances in ECG interpretation, expert-trained artificial intelligence, and a paradigm shift that incorporates a Bayesian approach to acute coronary occlusion.</description><identifier>ISSN: 0022-0736</identifier><identifier>EISSN: 1532-8430</identifier><identifier>DOI: 10.1016/j.jelectrocard.2023.10.011</identifier><identifier>PMID: 37951822</identifier><language>eng</language><publisher>United States</publisher><subject>Artificial Intelligence ; Bayes Theorem ; Coronary Occlusion ; Electrocardiography ; Humans ; ST Elevation Myocardial Infarction</subject><ispartof>Journal of electrocardiology, 2023-11, Vol.81, p.300-302</ispartof><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c262t-d05a86514ea659cb9afd6a6293cc05d08571593c9331fb73f4bfb9a3a2ec90c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37951822$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McLaren, Jesse T T</creatorcontrib><creatorcontrib>Smith, Stephen W</creatorcontrib><title>A Bayesian approach to acute coronary occlusion</title><title>Journal of electrocardiology</title><addtitle>J Electrocardiol</addtitle><description>In the STEMI paradigm, the disease (acute coronary occlusion) is defined and named after one element (ST elevation, without regard to the remainder of the QRST) of one imperfect test (the ECG). This leads to delayed reperfusion for patients with acute coronary occlusion whose ECGs don't meet STEMI criteria. In this editorial, we elaborate on the article by Jose Nunes de Alencar Neto about applying Bayesian reasoning to ECG interpretation. The Occlusion MI (OMI) paradigm offers evidencebased advances in ECG interpretation, expert-trained artificial intelligence, and a paradigm shift that incorporates a Bayesian approach to acute coronary occlusion.</description><subject>Artificial Intelligence</subject><subject>Bayes Theorem</subject><subject>Coronary Occlusion</subject><subject>Electrocardiography</subject><subject>Humans</subject><subject>ST Elevation Myocardial Infarction</subject><issn>0022-0736</issn><issn>1532-8430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OwzAQhC0EoqXwCijixCXp2o4Tm1up-JMqcendcjaOSJTGxU4OfXtctSBOq9XM7I4-Qh4oZBRoseyyzvYWR-_Q-DpjwHgUMqD0gsyp4CyVOYdLMgdgLIWSFzNyE0IHAIqV7JrMeKkElYzNyXKVPJuDDa0ZErPfe2fwKxldYnAabYLOu8H4Q-IQ-ym0brglV43pg707zwXZvr5s1-_p5vPtY73apMgKNqY1CCMLQXNrCqGwUqapC1MwxRFB1CBFSUVcFOe0qUre5FUTTdwwiwqQL8jj6Wxs9D3ZMOpdG9D2vRmsm4JmUiqWAwUZrU8nK3oXgreN3vt2F0trCvrIS3f6Py995HXUIq8Yvj__maqdrf-iv4D4D5i5amM</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>McLaren, Jesse T T</creator><creator>Smith, Stephen W</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202311</creationdate><title>A Bayesian approach to acute coronary occlusion</title><author>McLaren, Jesse T T ; Smith, Stephen W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-d05a86514ea659cb9afd6a6293cc05d08571593c9331fb73f4bfb9a3a2ec90c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Bayes Theorem</topic><topic>Coronary Occlusion</topic><topic>Electrocardiography</topic><topic>Humans</topic><topic>ST Elevation Myocardial Infarction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McLaren, Jesse T T</creatorcontrib><creatorcontrib>Smith, Stephen W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of electrocardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McLaren, Jesse T T</au><au>Smith, Stephen W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian approach to acute coronary occlusion</atitle><jtitle>Journal of electrocardiology</jtitle><addtitle>J Electrocardiol</addtitle><date>2023-11</date><risdate>2023</risdate><volume>81</volume><spage>300</spage><epage>302</epage><pages>300-302</pages><issn>0022-0736</issn><eissn>1532-8430</eissn><abstract>In the STEMI paradigm, the disease (acute coronary occlusion) is defined and named after one element (ST elevation, without regard to the remainder of the QRST) of one imperfect test (the ECG). This leads to delayed reperfusion for patients with acute coronary occlusion whose ECGs don't meet STEMI criteria. In this editorial, we elaborate on the article by Jose Nunes de Alencar Neto about applying Bayesian reasoning to ECG interpretation. The Occlusion MI (OMI) paradigm offers evidencebased advances in ECG interpretation, expert-trained artificial intelligence, and a paradigm shift that incorporates a Bayesian approach to acute coronary occlusion.</abstract><cop>United States</cop><pmid>37951822</pmid><doi>10.1016/j.jelectrocard.2023.10.011</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0736
ispartof Journal of electrocardiology, 2023-11, Vol.81, p.300-302
issn 0022-0736
1532-8430
language eng
recordid cdi_proquest_miscellaneous_2889240108
source ScienceDirect Freedom Collection
subjects Artificial Intelligence
Bayes Theorem
Coronary Occlusion
Electrocardiography
Humans
ST Elevation Myocardial Infarction
title A Bayesian approach to acute coronary occlusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A46%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20approach%20to%20acute%20coronary%20occlusion&rft.jtitle=Journal%20of%20electrocardiology&rft.au=McLaren,%20Jesse%20T%20T&rft.date=2023-11&rft.volume=81&rft.spage=300&rft.epage=302&rft.pages=300-302&rft.issn=0022-0736&rft.eissn=1532-8430&rft_id=info:doi/10.1016/j.jelectrocard.2023.10.011&rft_dat=%3Cproquest_cross%3E2889240108%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c262t-d05a86514ea659cb9afd6a6293cc05d08571593c9331fb73f4bfb9a3a2ec90c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2889240108&rft_id=info:pmid/37951822&rfr_iscdi=true