Loading…
A Bayesian approach to acute coronary occlusion
In the STEMI paradigm, the disease (acute coronary occlusion) is defined and named after one element (ST elevation, without regard to the remainder of the QRST) of one imperfect test (the ECG). This leads to delayed reperfusion for patients with acute coronary occlusion whose ECGs don't meet ST...
Saved in:
Published in: | Journal of electrocardiology 2023-11, Vol.81, p.300-302 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c262t-d05a86514ea659cb9afd6a6293cc05d08571593c9331fb73f4bfb9a3a2ec90c3 |
container_end_page | 302 |
container_issue | |
container_start_page | 300 |
container_title | Journal of electrocardiology |
container_volume | 81 |
creator | McLaren, Jesse T T Smith, Stephen W |
description | In the STEMI paradigm, the disease (acute coronary occlusion) is defined and named after one element (ST elevation, without regard to the remainder of the QRST) of one imperfect test (the ECG). This leads to delayed reperfusion for patients with acute coronary occlusion whose ECGs don't meet STEMI criteria. In this editorial, we elaborate on the article by Jose Nunes de Alencar Neto about applying Bayesian reasoning to ECG interpretation. The Occlusion MI (OMI) paradigm offers evidencebased advances in ECG interpretation, expert-trained artificial intelligence, and a paradigm shift that incorporates a Bayesian approach to acute coronary occlusion. |
doi_str_mv | 10.1016/j.jelectrocard.2023.10.011 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2889240108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889240108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-d05a86514ea659cb9afd6a6293cc05d08571593c9331fb73f4bfb9a3a2ec90c3</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EoqXwCijixCXp2o4Tm1up-JMqcendcjaOSJTGxU4OfXtctSBOq9XM7I4-Qh4oZBRoseyyzvYWR-_Q-DpjwHgUMqD0gsyp4CyVOYdLMgdgLIWSFzNyE0IHAIqV7JrMeKkElYzNyXKVPJuDDa0ZErPfe2fwKxldYnAabYLOu8H4Q-IQ-ym0brglV43pg707zwXZvr5s1-_p5vPtY73apMgKNqY1CCMLQXNrCqGwUqapC1MwxRFB1CBFSUVcFOe0qUre5FUTTdwwiwqQL8jj6Wxs9D3ZMOpdG9D2vRmsm4JmUiqWAwUZrU8nK3oXgreN3vt2F0trCvrIS3f6Py995HXUIq8Yvj__maqdrf-iv4D4D5i5amM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889240108</pqid></control><display><type>article</type><title>A Bayesian approach to acute coronary occlusion</title><source>ScienceDirect Freedom Collection</source><creator>McLaren, Jesse T T ; Smith, Stephen W</creator><creatorcontrib>McLaren, Jesse T T ; Smith, Stephen W</creatorcontrib><description>In the STEMI paradigm, the disease (acute coronary occlusion) is defined and named after one element (ST elevation, without regard to the remainder of the QRST) of one imperfect test (the ECG). This leads to delayed reperfusion for patients with acute coronary occlusion whose ECGs don't meet STEMI criteria. In this editorial, we elaborate on the article by Jose Nunes de Alencar Neto about applying Bayesian reasoning to ECG interpretation. The Occlusion MI (OMI) paradigm offers evidencebased advances in ECG interpretation, expert-trained artificial intelligence, and a paradigm shift that incorporates a Bayesian approach to acute coronary occlusion.</description><identifier>ISSN: 0022-0736</identifier><identifier>EISSN: 1532-8430</identifier><identifier>DOI: 10.1016/j.jelectrocard.2023.10.011</identifier><identifier>PMID: 37951822</identifier><language>eng</language><publisher>United States</publisher><subject>Artificial Intelligence ; Bayes Theorem ; Coronary Occlusion ; Electrocardiography ; Humans ; ST Elevation Myocardial Infarction</subject><ispartof>Journal of electrocardiology, 2023-11, Vol.81, p.300-302</ispartof><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c262t-d05a86514ea659cb9afd6a6293cc05d08571593c9331fb73f4bfb9a3a2ec90c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37951822$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McLaren, Jesse T T</creatorcontrib><creatorcontrib>Smith, Stephen W</creatorcontrib><title>A Bayesian approach to acute coronary occlusion</title><title>Journal of electrocardiology</title><addtitle>J Electrocardiol</addtitle><description>In the STEMI paradigm, the disease (acute coronary occlusion) is defined and named after one element (ST elevation, without regard to the remainder of the QRST) of one imperfect test (the ECG). This leads to delayed reperfusion for patients with acute coronary occlusion whose ECGs don't meet STEMI criteria. In this editorial, we elaborate on the article by Jose Nunes de Alencar Neto about applying Bayesian reasoning to ECG interpretation. The Occlusion MI (OMI) paradigm offers evidencebased advances in ECG interpretation, expert-trained artificial intelligence, and a paradigm shift that incorporates a Bayesian approach to acute coronary occlusion.</description><subject>Artificial Intelligence</subject><subject>Bayes Theorem</subject><subject>Coronary Occlusion</subject><subject>Electrocardiography</subject><subject>Humans</subject><subject>ST Elevation Myocardial Infarction</subject><issn>0022-0736</issn><issn>1532-8430</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OwzAQhC0EoqXwCijixCXp2o4Tm1up-JMqcendcjaOSJTGxU4OfXtctSBOq9XM7I4-Qh4oZBRoseyyzvYWR-_Q-DpjwHgUMqD0gsyp4CyVOYdLMgdgLIWSFzNyE0IHAIqV7JrMeKkElYzNyXKVPJuDDa0ZErPfe2fwKxldYnAabYLOu8H4Q-IQ-ym0brglV43pg707zwXZvr5s1-_p5vPtY73apMgKNqY1CCMLQXNrCqGwUqapC1MwxRFB1CBFSUVcFOe0qUre5FUTTdwwiwqQL8jj6Wxs9D3ZMOpdG9D2vRmsm4JmUiqWAwUZrU8nK3oXgreN3vt2F0trCvrIS3f6Py995HXUIq8Yvj__maqdrf-iv4D4D5i5amM</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>McLaren, Jesse T T</creator><creator>Smith, Stephen W</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202311</creationdate><title>A Bayesian approach to acute coronary occlusion</title><author>McLaren, Jesse T T ; Smith, Stephen W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-d05a86514ea659cb9afd6a6293cc05d08571593c9331fb73f4bfb9a3a2ec90c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Bayes Theorem</topic><topic>Coronary Occlusion</topic><topic>Electrocardiography</topic><topic>Humans</topic><topic>ST Elevation Myocardial Infarction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McLaren, Jesse T T</creatorcontrib><creatorcontrib>Smith, Stephen W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of electrocardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McLaren, Jesse T T</au><au>Smith, Stephen W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian approach to acute coronary occlusion</atitle><jtitle>Journal of electrocardiology</jtitle><addtitle>J Electrocardiol</addtitle><date>2023-11</date><risdate>2023</risdate><volume>81</volume><spage>300</spage><epage>302</epage><pages>300-302</pages><issn>0022-0736</issn><eissn>1532-8430</eissn><abstract>In the STEMI paradigm, the disease (acute coronary occlusion) is defined and named after one element (ST elevation, without regard to the remainder of the QRST) of one imperfect test (the ECG). This leads to delayed reperfusion for patients with acute coronary occlusion whose ECGs don't meet STEMI criteria. In this editorial, we elaborate on the article by Jose Nunes de Alencar Neto about applying Bayesian reasoning to ECG interpretation. The Occlusion MI (OMI) paradigm offers evidencebased advances in ECG interpretation, expert-trained artificial intelligence, and a paradigm shift that incorporates a Bayesian approach to acute coronary occlusion.</abstract><cop>United States</cop><pmid>37951822</pmid><doi>10.1016/j.jelectrocard.2023.10.011</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0736 |
ispartof | Journal of electrocardiology, 2023-11, Vol.81, p.300-302 |
issn | 0022-0736 1532-8430 |
language | eng |
recordid | cdi_proquest_miscellaneous_2889240108 |
source | ScienceDirect Freedom Collection |
subjects | Artificial Intelligence Bayes Theorem Coronary Occlusion Electrocardiography Humans ST Elevation Myocardial Infarction |
title | A Bayesian approach to acute coronary occlusion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A46%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20approach%20to%20acute%20coronary%20occlusion&rft.jtitle=Journal%20of%20electrocardiology&rft.au=McLaren,%20Jesse%20T%20T&rft.date=2023-11&rft.volume=81&rft.spage=300&rft.epage=302&rft.pages=300-302&rft.issn=0022-0736&rft.eissn=1532-8430&rft_id=info:doi/10.1016/j.jelectrocard.2023.10.011&rft_dat=%3Cproquest_cross%3E2889240108%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c262t-d05a86514ea659cb9afd6a6293cc05d08571593c9331fb73f4bfb9a3a2ec90c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2889240108&rft_id=info:pmid/37951822&rfr_iscdi=true |