Loading…

Integrating In‐Plane Thermoelectricity and Out‐Plane Piezoresistivity for Fully Decoupled Temperature‐Pressure Sensing

A flexible sensor that simultaneously senses temperature and pressure is crucial in various fields, such as human‐machine interaction, artificial intelligence, and biomedical applications. Previous research has mainly focused on single‐function flexible sensors for e‐skins or smart devices, and inte...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-03, Vol.20 (12), p.e2307800-n/a
Main Authors: Wang, Jincheng, Chen, Rui, Ji, Dongsheng, Xu, Wenjun, Zhang, Wenzhuo, Zhang, Chen, Zhou, Wei, Luo, Tao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3730-909e0af054110a3f1866e5af56a1d0d70a2ef6d060bfbfe4eceb5c549220bbce3
cites cdi_FETCH-LOGICAL-c3730-909e0af054110a3f1866e5af56a1d0d70a2ef6d060bfbfe4eceb5c549220bbce3
container_end_page n/a
container_issue 12
container_start_page e2307800
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Wang, Jincheng
Chen, Rui
Ji, Dongsheng
Xu, Wenjun
Zhang, Wenzhuo
Zhang, Chen
Zhou, Wei
Luo, Tao
description A flexible sensor that simultaneously senses temperature and pressure is crucial in various fields, such as human‐machine interaction, artificial intelligence, and biomedical applications. Previous research has mainly focused on single‐function flexible sensors for e‐skins or smart devices, and integrated bimodal sensing of temperature and pressure without complex crosstalk decoupling algorithms remains challenging. In this work, a flexible bimodal sensor is proposed that utilizes spatial orthogonality between in‐plane thermoelectricity and out‐plane piezoresistivity, which enables fully decoupled temperature‐pressure sensing. The proposed bimodal sensor exhibits a high sensitivity of 281.46 µV K−1 for temperature sensing and 2.181 kPa−1 for pressure sensing. In the bimodal sensing mode, the sensor exhibits negligible mutual interference, providing a measurement error of ± 7% and ± 8% for temperature and pressure, respectively, within a 120 kPa pressure range and a 40 K temperature variation. Additionally, simultaneous spatial mapping of temperature and pressure with a bimodal sensor array enables contact shape identification with enhanced accuracy beyond the limit imposed by the number of sensing units. The proposed integrated bimodal sensing strategy does not require complex crosstalk decoupling algorithms, which represents a significant advancement in flexible sensors for applications that necessitate simultaneous sensing of temperature and pressure. The demand for simultaneous temperature and pressure sensing with minimal interference is on the rise, particularly in the fields of robotics and wearable devices. A flexible bimodal sensor, which integrates in‐plane thermoelectricity and out‐plane piezoresistivity, is developed to fulfill this need. This sensor exhibits negligible mutual interference, marking a significant advancement in flexible sensor technology.
doi_str_mv 10.1002/smll.202307800
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2889243375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889243375</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3730-909e0af054110a3f1866e5af56a1d0d70a2ef6d060bfbfe4eceb5c549220bbce3</originalsourceid><addsrcrecordid>eNqF0ctOGzEUBmALFTUUumVZjdQNm4Rje65LxK2RgoJEWFsez3HqyDMT7BlQEAseoc_YJ6lHoUFiw8pn8Z3ftn5CjilMKAA79bW1EwaMQ5YD7JEDmlI-TnNWfNnNFEbkm_crAE5ZnH0lI54VcR7T7IC8TJsOl052pllG0-bv659bKxuMFr_R1S1aVJ0zynSbSDZVNO-7nbg1-Nw69MZ35nEAunXRVW_tJrpA1fZri1W0wHqNIb13OCwG7sMY3WHjw4VHZF9L6_H723lI7q8uF-e_xrP59fT8bDZWPOMwLqBAkBqSmFKQXNM8TTGROkklraDKQDLUaQUplLrUGKPCMlFJXDAGZamQH5KTbe7atQ89-k7Uxiu0wz_a3guW5wWLOc-SQH9-oKu2d014nWBFxnmcAtCgJlulXOu9Qy3WztTSbQQFMfQihl7Erpew8OMtti9rrHb8fxEBFFvwZCxuPokTdzez2Xv4P2DRn6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2973346001</pqid></control><display><type>article</type><title>Integrating In‐Plane Thermoelectricity and Out‐Plane Piezoresistivity for Fully Decoupled Temperature‐Pressure Sensing</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wang, Jincheng ; Chen, Rui ; Ji, Dongsheng ; Xu, Wenjun ; Zhang, Wenzhuo ; Zhang, Chen ; Zhou, Wei ; Luo, Tao</creator><creatorcontrib>Wang, Jincheng ; Chen, Rui ; Ji, Dongsheng ; Xu, Wenjun ; Zhang, Wenzhuo ; Zhang, Chen ; Zhou, Wei ; Luo, Tao</creatorcontrib><description>A flexible sensor that simultaneously senses temperature and pressure is crucial in various fields, such as human‐machine interaction, artificial intelligence, and biomedical applications. Previous research has mainly focused on single‐function flexible sensors for e‐skins or smart devices, and integrated bimodal sensing of temperature and pressure without complex crosstalk decoupling algorithms remains challenging. In this work, a flexible bimodal sensor is proposed that utilizes spatial orthogonality between in‐plane thermoelectricity and out‐plane piezoresistivity, which enables fully decoupled temperature‐pressure sensing. The proposed bimodal sensor exhibits a high sensitivity of 281.46 µV K−1 for temperature sensing and 2.181 kPa−1 for pressure sensing. In the bimodal sensing mode, the sensor exhibits negligible mutual interference, providing a measurement error of ± 7% and ± 8% for temperature and pressure, respectively, within a 120 kPa pressure range and a 40 K temperature variation. Additionally, simultaneous spatial mapping of temperature and pressure with a bimodal sensor array enables contact shape identification with enhanced accuracy beyond the limit imposed by the number of sensing units. The proposed integrated bimodal sensing strategy does not require complex crosstalk decoupling algorithms, which represents a significant advancement in flexible sensors for applications that necessitate simultaneous sensing of temperature and pressure. The demand for simultaneous temperature and pressure sensing with minimal interference is on the rise, particularly in the fields of robotics and wearable devices. A flexible bimodal sensor, which integrates in‐plane thermoelectricity and out‐plane piezoresistivity, is developed to fulfill this need. This sensor exhibits negligible mutual interference, marking a significant advancement in flexible sensor technology.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202307800</identifier><identifier>PMID: 37948417</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Artificial intelligence ; Biomedical materials ; Contact pressure ; Crosstalk ; Decoupling ; Error analysis ; flexible bimodal sensors ; Flexible components ; Orthogonality ; Piezoresistivity ; pressure sensing ; Sensor arrays ; Sensors ; temperature sensing ; Thermoelectricity</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-03, Vol.20 (12), p.e2307800-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3730-909e0af054110a3f1866e5af56a1d0d70a2ef6d060bfbfe4eceb5c549220bbce3</citedby><cites>FETCH-LOGICAL-c3730-909e0af054110a3f1866e5af56a1d0d70a2ef6d060bfbfe4eceb5c549220bbce3</cites><orcidid>0000-0002-9820-556X ; 0000-0002-3185-8208 ; 0000-0002-4861-3397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37948417$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jincheng</creatorcontrib><creatorcontrib>Chen, Rui</creatorcontrib><creatorcontrib>Ji, Dongsheng</creatorcontrib><creatorcontrib>Xu, Wenjun</creatorcontrib><creatorcontrib>Zhang, Wenzhuo</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Luo, Tao</creatorcontrib><title>Integrating In‐Plane Thermoelectricity and Out‐Plane Piezoresistivity for Fully Decoupled Temperature‐Pressure Sensing</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>A flexible sensor that simultaneously senses temperature and pressure is crucial in various fields, such as human‐machine interaction, artificial intelligence, and biomedical applications. Previous research has mainly focused on single‐function flexible sensors for e‐skins or smart devices, and integrated bimodal sensing of temperature and pressure without complex crosstalk decoupling algorithms remains challenging. In this work, a flexible bimodal sensor is proposed that utilizes spatial orthogonality between in‐plane thermoelectricity and out‐plane piezoresistivity, which enables fully decoupled temperature‐pressure sensing. The proposed bimodal sensor exhibits a high sensitivity of 281.46 µV K−1 for temperature sensing and 2.181 kPa−1 for pressure sensing. In the bimodal sensing mode, the sensor exhibits negligible mutual interference, providing a measurement error of ± 7% and ± 8% for temperature and pressure, respectively, within a 120 kPa pressure range and a 40 K temperature variation. Additionally, simultaneous spatial mapping of temperature and pressure with a bimodal sensor array enables contact shape identification with enhanced accuracy beyond the limit imposed by the number of sensing units. The proposed integrated bimodal sensing strategy does not require complex crosstalk decoupling algorithms, which represents a significant advancement in flexible sensors for applications that necessitate simultaneous sensing of temperature and pressure. The demand for simultaneous temperature and pressure sensing with minimal interference is on the rise, particularly in the fields of robotics and wearable devices. A flexible bimodal sensor, which integrates in‐plane thermoelectricity and out‐plane piezoresistivity, is developed to fulfill this need. This sensor exhibits negligible mutual interference, marking a significant advancement in flexible sensor technology.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Biomedical materials</subject><subject>Contact pressure</subject><subject>Crosstalk</subject><subject>Decoupling</subject><subject>Error analysis</subject><subject>flexible bimodal sensors</subject><subject>Flexible components</subject><subject>Orthogonality</subject><subject>Piezoresistivity</subject><subject>pressure sensing</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>temperature sensing</subject><subject>Thermoelectricity</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqF0ctOGzEUBmALFTUUumVZjdQNm4Rje65LxK2RgoJEWFsez3HqyDMT7BlQEAseoc_YJ6lHoUFiw8pn8Z3ftn5CjilMKAA79bW1EwaMQ5YD7JEDmlI-TnNWfNnNFEbkm_crAE5ZnH0lI54VcR7T7IC8TJsOl052pllG0-bv659bKxuMFr_R1S1aVJ0zynSbSDZVNO-7nbg1-Nw69MZ35nEAunXRVW_tJrpA1fZri1W0wHqNIb13OCwG7sMY3WHjw4VHZF9L6_H723lI7q8uF-e_xrP59fT8bDZWPOMwLqBAkBqSmFKQXNM8TTGROkklraDKQDLUaQUplLrUGKPCMlFJXDAGZamQH5KTbe7atQ89-k7Uxiu0wz_a3guW5wWLOc-SQH9-oKu2d014nWBFxnmcAtCgJlulXOu9Qy3WztTSbQQFMfQihl7Erpew8OMtti9rrHb8fxEBFFvwZCxuPokTdzez2Xv4P2DRn6A</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Wang, Jincheng</creator><creator>Chen, Rui</creator><creator>Ji, Dongsheng</creator><creator>Xu, Wenjun</creator><creator>Zhang, Wenzhuo</creator><creator>Zhang, Chen</creator><creator>Zhou, Wei</creator><creator>Luo, Tao</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9820-556X</orcidid><orcidid>https://orcid.org/0000-0002-3185-8208</orcidid><orcidid>https://orcid.org/0000-0002-4861-3397</orcidid></search><sort><creationdate>20240301</creationdate><title>Integrating In‐Plane Thermoelectricity and Out‐Plane Piezoresistivity for Fully Decoupled Temperature‐Pressure Sensing</title><author>Wang, Jincheng ; Chen, Rui ; Ji, Dongsheng ; Xu, Wenjun ; Zhang, Wenzhuo ; Zhang, Chen ; Zhou, Wei ; Luo, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3730-909e0af054110a3f1866e5af56a1d0d70a2ef6d060bfbfe4eceb5c549220bbce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Biomedical materials</topic><topic>Contact pressure</topic><topic>Crosstalk</topic><topic>Decoupling</topic><topic>Error analysis</topic><topic>flexible bimodal sensors</topic><topic>Flexible components</topic><topic>Orthogonality</topic><topic>Piezoresistivity</topic><topic>pressure sensing</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>temperature sensing</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jincheng</creatorcontrib><creatorcontrib>Chen, Rui</creatorcontrib><creatorcontrib>Ji, Dongsheng</creatorcontrib><creatorcontrib>Xu, Wenjun</creatorcontrib><creatorcontrib>Zhang, Wenzhuo</creatorcontrib><creatorcontrib>Zhang, Chen</creatorcontrib><creatorcontrib>Zhou, Wei</creatorcontrib><creatorcontrib>Luo, Tao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jincheng</au><au>Chen, Rui</au><au>Ji, Dongsheng</au><au>Xu, Wenjun</au><au>Zhang, Wenzhuo</au><au>Zhang, Chen</au><au>Zhou, Wei</au><au>Luo, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating In‐Plane Thermoelectricity and Out‐Plane Piezoresistivity for Fully Decoupled Temperature‐Pressure Sensing</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>20</volume><issue>12</issue><spage>e2307800</spage><epage>n/a</epage><pages>e2307800-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>A flexible sensor that simultaneously senses temperature and pressure is crucial in various fields, such as human‐machine interaction, artificial intelligence, and biomedical applications. Previous research has mainly focused on single‐function flexible sensors for e‐skins or smart devices, and integrated bimodal sensing of temperature and pressure without complex crosstalk decoupling algorithms remains challenging. In this work, a flexible bimodal sensor is proposed that utilizes spatial orthogonality between in‐plane thermoelectricity and out‐plane piezoresistivity, which enables fully decoupled temperature‐pressure sensing. The proposed bimodal sensor exhibits a high sensitivity of 281.46 µV K−1 for temperature sensing and 2.181 kPa−1 for pressure sensing. In the bimodal sensing mode, the sensor exhibits negligible mutual interference, providing a measurement error of ± 7% and ± 8% for temperature and pressure, respectively, within a 120 kPa pressure range and a 40 K temperature variation. Additionally, simultaneous spatial mapping of temperature and pressure with a bimodal sensor array enables contact shape identification with enhanced accuracy beyond the limit imposed by the number of sensing units. The proposed integrated bimodal sensing strategy does not require complex crosstalk decoupling algorithms, which represents a significant advancement in flexible sensors for applications that necessitate simultaneous sensing of temperature and pressure. The demand for simultaneous temperature and pressure sensing with minimal interference is on the rise, particularly in the fields of robotics and wearable devices. A flexible bimodal sensor, which integrates in‐plane thermoelectricity and out‐plane piezoresistivity, is developed to fulfill this need. This sensor exhibits negligible mutual interference, marking a significant advancement in flexible sensor technology.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37948417</pmid><doi>10.1002/smll.202307800</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9820-556X</orcidid><orcidid>https://orcid.org/0000-0002-3185-8208</orcidid><orcidid>https://orcid.org/0000-0002-4861-3397</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-03, Vol.20 (12), p.e2307800-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2889243375
source Wiley-Blackwell Read & Publish Collection
subjects Algorithms
Artificial intelligence
Biomedical materials
Contact pressure
Crosstalk
Decoupling
Error analysis
flexible bimodal sensors
Flexible components
Orthogonality
Piezoresistivity
pressure sensing
Sensor arrays
Sensors
temperature sensing
Thermoelectricity
title Integrating In‐Plane Thermoelectricity and Out‐Plane Piezoresistivity for Fully Decoupled Temperature‐Pressure Sensing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A05%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20In%E2%80%90Plane%20Thermoelectricity%20and%20Out%E2%80%90Plane%20Piezoresistivity%20for%20Fully%20Decoupled%20Temperature%E2%80%90Pressure%20Sensing&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Wang,%20Jincheng&rft.date=2024-03-01&rft.volume=20&rft.issue=12&rft.spage=e2307800&rft.epage=n/a&rft.pages=e2307800-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202307800&rft_dat=%3Cproquest_cross%3E2889243375%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3730-909e0af054110a3f1866e5af56a1d0d70a2ef6d060bfbfe4eceb5c549220bbce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2973346001&rft_id=info:pmid/37948417&rfr_iscdi=true