Loading…

Glioblastoma and Solitary Brain Metastasis: Differentiation by Integrating Demographic‐MRI and Deep‐Learning Radiomics Signatures

Background Studies have shown that deep‐learning radiomics (DLR) could help differentiate glioblastoma (GBM) from solitary brain metastasis (SBM), but whether integrating demographic‐MRI and DLR features can more accurately distinguish GBM from SBM remains uncertain. Purpose To construct and validat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetic resonance imaging 2024-09, Vol.60 (3), p.909-920
Main Authors: Zhang, Yuze, Zhang, Hongbo, Zhang, Hanwen, Ouyang, Ying, Su, Ruru, Yang, Wanqun, Huang, Biao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3573-cb0b56e05af45ddfa8bf9e98dd5f885ee0e9be8efeffd00627a75db4531abf323
cites cdi_FETCH-LOGICAL-c3573-cb0b56e05af45ddfa8bf9e98dd5f885ee0e9be8efeffd00627a75db4531abf323
container_end_page 920
container_issue 3
container_start_page 909
container_title Journal of magnetic resonance imaging
container_volume 60
creator Zhang, Yuze
Zhang, Hongbo
Zhang, Hanwen
Ouyang, Ying
Su, Ruru
Yang, Wanqun
Huang, Biao
description Background Studies have shown that deep‐learning radiomics (DLR) could help differentiate glioblastoma (GBM) from solitary brain metastasis (SBM), but whether integrating demographic‐MRI and DLR features can more accurately distinguish GBM from SBM remains uncertain. Purpose To construct and validate a demographic‐MRI deep‐learning radiomics nomogram (DDLRN) integrating demographic‐MRI and DLR signatures to differentiate GBM from SBM preoperatively. Study Type Retrospective. Population Two hundred and thirty‐five patients with GBM (N = 115) or SBM (N = 120), randomly divided into a training cohort (90 GBM and 98 SBM) and a validation cohort (25 GBM and 22 SBM). Field Strength/Sequence Axial T2‐weighted fast spin‐echo sequence (T2WI), T2‐weighted fluid‐attenuated inversion recovery sequence (T2‐FLAIR), and contrast‐enhanced T1‐weighted spin‐echo sequence (CE‐T1WI) using 1.5‐T and 3.0‐T scanners. Assessment The demographic‐MRI signature was constructed with seven imaging features (“pool sign,” “irregular ring sign,” “regular ring sign,” “intratumoral vessel sign,” the ratio of the area of peritumoral edema to the enhanced tumor, the ratio of the lesion area on T2‐FLAIR to CE‐T1WI, and the tumor location) and demographic factors (age and sex). Based on multiparametric MRI, radiomics and deep‐learning (DL) models, DLR signature, and DDLRN were developed and validated. Statistical Tests The Mann–Whitney U test, Pearson test, least absolute shrinkage and selection operator, and support vector machine algorithm were applied for feature selection and construction of radiomics and DL models. Results DDLRN showed the best performance in differentiating GBM from SBM with area under the curves (AUCs) of 0.999 and 0.947 in the training and validation cohorts, respectively. Additionally, the DLR signature (AUC = 0.938) outperformed the radiomics and DL models, and the demographic‐MRI signature (AUC = 0.775) was comparable to the T2‐FLAIR radiomics and DL models in the validation cohort (AUC = 0.762 and 0.749, respectively). Data Conclusion DDLRN integrating demographic‐MRI and DLR signatures showed excellent performance in differentiating GBM from SBM. Level of Evidence 3 Technical Efficacy Stage 2
doi_str_mv 10.1002/jmri.29123
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2889587927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889587927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3573-cb0b56e05af45ddfa8bf9e98dd5f885ee0e9be8efeffd00627a75db4531abf323</originalsourceid><addsrcrecordid>eNp9kT1vFDEQhlcIRD6g4QcgSzQo0gZ_rHdtOshBOHQRUgK1Za_Hh0-79sXeFbqOhp7fyC_BlwsUFFQzo3n0aDRvVT0j-JxgTF9txuTPqSSUPaiOCae0ply0D0uPOauJwN1RdZLzBmMsZcMfV0esk5wT3hxXPy4HH82g8xRHjXSw6CYOftJph94m7QO6gqksdfb5NVp45yBBmLyefAzI7NAyTLBOZQxrtIAxln771fe_vv-8ul7e-RYA2zKuQKewp6619XH0fUY3fh30NCfIT6pHTg8Znt7X0-rL-3efLz7Uq0-Xy4s3q7pnvGN1b7DhLWCuXcOtdVoYJ0EKa7kTggNgkAYEOHDOYtzSTnfcmoYzoo1jlJ1WLw_ebYq3M-RJjT73MAw6QJyzokJILjpJu4K--AfdxDmFcp1iWLRCNqxtCnV2oPoUc07g1Db5sXxPEaz24ah9OOounAI_v1fOZgT7F_2TRgHIAfjmB9j9R6U-lu8epL8Bwaeeyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086894364</pqid></control><display><type>article</type><title>Glioblastoma and Solitary Brain Metastasis: Differentiation by Integrating Demographic‐MRI and Deep‐Learning Radiomics Signatures</title><source>Wiley</source><creator>Zhang, Yuze ; Zhang, Hongbo ; Zhang, Hanwen ; Ouyang, Ying ; Su, Ruru ; Yang, Wanqun ; Huang, Biao</creator><creatorcontrib>Zhang, Yuze ; Zhang, Hongbo ; Zhang, Hanwen ; Ouyang, Ying ; Su, Ruru ; Yang, Wanqun ; Huang, Biao</creatorcontrib><description>Background Studies have shown that deep‐learning radiomics (DLR) could help differentiate glioblastoma (GBM) from solitary brain metastasis (SBM), but whether integrating demographic‐MRI and DLR features can more accurately distinguish GBM from SBM remains uncertain. Purpose To construct and validate a demographic‐MRI deep‐learning radiomics nomogram (DDLRN) integrating demographic‐MRI and DLR signatures to differentiate GBM from SBM preoperatively. Study Type Retrospective. Population Two hundred and thirty‐five patients with GBM (N = 115) or SBM (N = 120), randomly divided into a training cohort (90 GBM and 98 SBM) and a validation cohort (25 GBM and 22 SBM). Field Strength/Sequence Axial T2‐weighted fast spin‐echo sequence (T2WI), T2‐weighted fluid‐attenuated inversion recovery sequence (T2‐FLAIR), and contrast‐enhanced T1‐weighted spin‐echo sequence (CE‐T1WI) using 1.5‐T and 3.0‐T scanners. Assessment The demographic‐MRI signature was constructed with seven imaging features (“pool sign,” “irregular ring sign,” “regular ring sign,” “intratumoral vessel sign,” the ratio of the area of peritumoral edema to the enhanced tumor, the ratio of the lesion area on T2‐FLAIR to CE‐T1WI, and the tumor location) and demographic factors (age and sex). Based on multiparametric MRI, radiomics and deep‐learning (DL) models, DLR signature, and DDLRN were developed and validated. Statistical Tests The Mann–Whitney U test, Pearson test, least absolute shrinkage and selection operator, and support vector machine algorithm were applied for feature selection and construction of radiomics and DL models. Results DDLRN showed the best performance in differentiating GBM from SBM with area under the curves (AUCs) of 0.999 and 0.947 in the training and validation cohorts, respectively. Additionally, the DLR signature (AUC = 0.938) outperformed the radiomics and DL models, and the demographic‐MRI signature (AUC = 0.775) was comparable to the T2‐FLAIR radiomics and DL models in the validation cohort (AUC = 0.762 and 0.749, respectively). Data Conclusion DDLRN integrating demographic‐MRI and DLR signatures showed excellent performance in differentiating GBM from SBM. Level of Evidence 3 Technical Efficacy Stage 2</description><identifier>ISSN: 1053-1807</identifier><identifier>ISSN: 1522-2586</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.29123</identifier><identifier>PMID: 37955154</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Adult ; Aged ; Algorithms ; Brain ; Brain - diagnostic imaging ; Brain cancer ; Brain Neoplasms - diagnostic imaging ; Brain Neoplasms - secondary ; Deep Learning ; Demographics ; Demography ; Diagnosis, Differential ; Edema ; Female ; Field strength ; Glioblastoma ; Glioblastoma - diagnostic imaging ; Glioma ; Humans ; Learning ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Metastases ; Metastasis ; Middle Aged ; multiparametric ; Neuroimaging ; Nomograms ; Population studies ; radiographic features ; Radiomics ; Retrospective Studies ; Signatures ; solitary brain metastasis ; Statistical analysis ; Statistical models ; Statistical tests ; Support vector machines ; Training ; Tumors</subject><ispartof>Journal of magnetic resonance imaging, 2024-09, Vol.60 (3), p.909-920</ispartof><rights>2023 International Society for Magnetic Resonance in Medicine.</rights><rights>2024 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3573-cb0b56e05af45ddfa8bf9e98dd5f885ee0e9be8efeffd00627a75db4531abf323</citedby><cites>FETCH-LOGICAL-c3573-cb0b56e05af45ddfa8bf9e98dd5f885ee0e9be8efeffd00627a75db4531abf323</cites><orcidid>0000-0002-0423-9671 ; 0000-0001-7915-5993 ; 0000-0002-6602-7340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37955154$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yuze</creatorcontrib><creatorcontrib>Zhang, Hongbo</creatorcontrib><creatorcontrib>Zhang, Hanwen</creatorcontrib><creatorcontrib>Ouyang, Ying</creatorcontrib><creatorcontrib>Su, Ruru</creatorcontrib><creatorcontrib>Yang, Wanqun</creatorcontrib><creatorcontrib>Huang, Biao</creatorcontrib><title>Glioblastoma and Solitary Brain Metastasis: Differentiation by Integrating Demographic‐MRI and Deep‐Learning Radiomics Signatures</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background Studies have shown that deep‐learning radiomics (DLR) could help differentiate glioblastoma (GBM) from solitary brain metastasis (SBM), but whether integrating demographic‐MRI and DLR features can more accurately distinguish GBM from SBM remains uncertain. Purpose To construct and validate a demographic‐MRI deep‐learning radiomics nomogram (DDLRN) integrating demographic‐MRI and DLR signatures to differentiate GBM from SBM preoperatively. Study Type Retrospective. Population Two hundred and thirty‐five patients with GBM (N = 115) or SBM (N = 120), randomly divided into a training cohort (90 GBM and 98 SBM) and a validation cohort (25 GBM and 22 SBM). Field Strength/Sequence Axial T2‐weighted fast spin‐echo sequence (T2WI), T2‐weighted fluid‐attenuated inversion recovery sequence (T2‐FLAIR), and contrast‐enhanced T1‐weighted spin‐echo sequence (CE‐T1WI) using 1.5‐T and 3.0‐T scanners. Assessment The demographic‐MRI signature was constructed with seven imaging features (“pool sign,” “irregular ring sign,” “regular ring sign,” “intratumoral vessel sign,” the ratio of the area of peritumoral edema to the enhanced tumor, the ratio of the lesion area on T2‐FLAIR to CE‐T1WI, and the tumor location) and demographic factors (age and sex). Based on multiparametric MRI, radiomics and deep‐learning (DL) models, DLR signature, and DDLRN were developed and validated. Statistical Tests The Mann–Whitney U test, Pearson test, least absolute shrinkage and selection operator, and support vector machine algorithm were applied for feature selection and construction of radiomics and DL models. Results DDLRN showed the best performance in differentiating GBM from SBM with area under the curves (AUCs) of 0.999 and 0.947 in the training and validation cohorts, respectively. Additionally, the DLR signature (AUC = 0.938) outperformed the radiomics and DL models, and the demographic‐MRI signature (AUC = 0.775) was comparable to the T2‐FLAIR radiomics and DL models in the validation cohort (AUC = 0.762 and 0.749, respectively). Data Conclusion DDLRN integrating demographic‐MRI and DLR signatures showed excellent performance in differentiating GBM from SBM. Level of Evidence 3 Technical Efficacy Stage 2</description><subject>Adult</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Brain Neoplasms - secondary</subject><subject>Deep Learning</subject><subject>Demographics</subject><subject>Demography</subject><subject>Diagnosis, Differential</subject><subject>Edema</subject><subject>Female</subject><subject>Field strength</subject><subject>Glioblastoma</subject><subject>Glioblastoma - diagnostic imaging</subject><subject>Glioma</subject><subject>Humans</subject><subject>Learning</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Middle Aged</subject><subject>multiparametric</subject><subject>Neuroimaging</subject><subject>Nomograms</subject><subject>Population studies</subject><subject>radiographic features</subject><subject>Radiomics</subject><subject>Retrospective Studies</subject><subject>Signatures</subject><subject>solitary brain metastasis</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Statistical tests</subject><subject>Support vector machines</subject><subject>Training</subject><subject>Tumors</subject><issn>1053-1807</issn><issn>1522-2586</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kT1vFDEQhlcIRD6g4QcgSzQo0gZ_rHdtOshBOHQRUgK1Za_Hh0-79sXeFbqOhp7fyC_BlwsUFFQzo3n0aDRvVT0j-JxgTF9txuTPqSSUPaiOCae0ply0D0uPOauJwN1RdZLzBmMsZcMfV0esk5wT3hxXPy4HH82g8xRHjXSw6CYOftJph94m7QO6gqksdfb5NVp45yBBmLyefAzI7NAyTLBOZQxrtIAxln771fe_vv-8ul7e-RYA2zKuQKewp6619XH0fUY3fh30NCfIT6pHTg8Znt7X0-rL-3efLz7Uq0-Xy4s3q7pnvGN1b7DhLWCuXcOtdVoYJ0EKa7kTggNgkAYEOHDOYtzSTnfcmoYzoo1jlJ1WLw_ebYq3M-RJjT73MAw6QJyzokJILjpJu4K--AfdxDmFcp1iWLRCNqxtCnV2oPoUc07g1Db5sXxPEaz24ah9OOounAI_v1fOZgT7F_2TRgHIAfjmB9j9R6U-lu8epL8Bwaeeyw</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Zhang, Yuze</creator><creator>Zhang, Hongbo</creator><creator>Zhang, Hanwen</creator><creator>Ouyang, Ying</creator><creator>Su, Ruru</creator><creator>Yang, Wanqun</creator><creator>Huang, Biao</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0423-9671</orcidid><orcidid>https://orcid.org/0000-0001-7915-5993</orcidid><orcidid>https://orcid.org/0000-0002-6602-7340</orcidid></search><sort><creationdate>202409</creationdate><title>Glioblastoma and Solitary Brain Metastasis: Differentiation by Integrating Demographic‐MRI and Deep‐Learning Radiomics Signatures</title><author>Zhang, Yuze ; Zhang, Hongbo ; Zhang, Hanwen ; Ouyang, Ying ; Su, Ruru ; Yang, Wanqun ; Huang, Biao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3573-cb0b56e05af45ddfa8bf9e98dd5f885ee0e9be8efeffd00627a75db4531abf323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Brain Neoplasms - secondary</topic><topic>Deep Learning</topic><topic>Demographics</topic><topic>Demography</topic><topic>Diagnosis, Differential</topic><topic>Edema</topic><topic>Female</topic><topic>Field strength</topic><topic>Glioblastoma</topic><topic>Glioblastoma - diagnostic imaging</topic><topic>Glioma</topic><topic>Humans</topic><topic>Learning</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Middle Aged</topic><topic>multiparametric</topic><topic>Neuroimaging</topic><topic>Nomograms</topic><topic>Population studies</topic><topic>radiographic features</topic><topic>Radiomics</topic><topic>Retrospective Studies</topic><topic>Signatures</topic><topic>solitary brain metastasis</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Statistical tests</topic><topic>Support vector machines</topic><topic>Training</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuze</creatorcontrib><creatorcontrib>Zhang, Hongbo</creatorcontrib><creatorcontrib>Zhang, Hanwen</creatorcontrib><creatorcontrib>Ouyang, Ying</creatorcontrib><creatorcontrib>Su, Ruru</creatorcontrib><creatorcontrib>Yang, Wanqun</creatorcontrib><creatorcontrib>Huang, Biao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuze</au><au>Zhang, Hongbo</au><au>Zhang, Hanwen</au><au>Ouyang, Ying</au><au>Su, Ruru</au><au>Yang, Wanqun</au><au>Huang, Biao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glioblastoma and Solitary Brain Metastasis: Differentiation by Integrating Demographic‐MRI and Deep‐Learning Radiomics Signatures</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2024-09</date><risdate>2024</risdate><volume>60</volume><issue>3</issue><spage>909</spage><epage>920</epage><pages>909-920</pages><issn>1053-1807</issn><issn>1522-2586</issn><eissn>1522-2586</eissn><abstract>Background Studies have shown that deep‐learning radiomics (DLR) could help differentiate glioblastoma (GBM) from solitary brain metastasis (SBM), but whether integrating demographic‐MRI and DLR features can more accurately distinguish GBM from SBM remains uncertain. Purpose To construct and validate a demographic‐MRI deep‐learning radiomics nomogram (DDLRN) integrating demographic‐MRI and DLR signatures to differentiate GBM from SBM preoperatively. Study Type Retrospective. Population Two hundred and thirty‐five patients with GBM (N = 115) or SBM (N = 120), randomly divided into a training cohort (90 GBM and 98 SBM) and a validation cohort (25 GBM and 22 SBM). Field Strength/Sequence Axial T2‐weighted fast spin‐echo sequence (T2WI), T2‐weighted fluid‐attenuated inversion recovery sequence (T2‐FLAIR), and contrast‐enhanced T1‐weighted spin‐echo sequence (CE‐T1WI) using 1.5‐T and 3.0‐T scanners. Assessment The demographic‐MRI signature was constructed with seven imaging features (“pool sign,” “irregular ring sign,” “regular ring sign,” “intratumoral vessel sign,” the ratio of the area of peritumoral edema to the enhanced tumor, the ratio of the lesion area on T2‐FLAIR to CE‐T1WI, and the tumor location) and demographic factors (age and sex). Based on multiparametric MRI, radiomics and deep‐learning (DL) models, DLR signature, and DDLRN were developed and validated. Statistical Tests The Mann–Whitney U test, Pearson test, least absolute shrinkage and selection operator, and support vector machine algorithm were applied for feature selection and construction of radiomics and DL models. Results DDLRN showed the best performance in differentiating GBM from SBM with area under the curves (AUCs) of 0.999 and 0.947 in the training and validation cohorts, respectively. Additionally, the DLR signature (AUC = 0.938) outperformed the radiomics and DL models, and the demographic‐MRI signature (AUC = 0.775) was comparable to the T2‐FLAIR radiomics and DL models in the validation cohort (AUC = 0.762 and 0.749, respectively). Data Conclusion DDLRN integrating demographic‐MRI and DLR signatures showed excellent performance in differentiating GBM from SBM. Level of Evidence 3 Technical Efficacy Stage 2</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>37955154</pmid><doi>10.1002/jmri.29123</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0423-9671</orcidid><orcidid>https://orcid.org/0000-0001-7915-5993</orcidid><orcidid>https://orcid.org/0000-0002-6602-7340</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2024-09, Vol.60 (3), p.909-920
issn 1053-1807
1522-2586
1522-2586
language eng
recordid cdi_proquest_miscellaneous_2889587927
source Wiley
subjects Adult
Aged
Algorithms
Brain
Brain - diagnostic imaging
Brain cancer
Brain Neoplasms - diagnostic imaging
Brain Neoplasms - secondary
Deep Learning
Demographics
Demography
Diagnosis, Differential
Edema
Female
Field strength
Glioblastoma
Glioblastoma - diagnostic imaging
Glioma
Humans
Learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Metastases
Metastasis
Middle Aged
multiparametric
Neuroimaging
Nomograms
Population studies
radiographic features
Radiomics
Retrospective Studies
Signatures
solitary brain metastasis
Statistical analysis
Statistical models
Statistical tests
Support vector machines
Training
Tumors
title Glioblastoma and Solitary Brain Metastasis: Differentiation by Integrating Demographic‐MRI and Deep‐Learning Radiomics Signatures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A07%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glioblastoma%20and%20Solitary%20Brain%20Metastasis:%20Differentiation%20by%20Integrating%20Demographic%E2%80%90MRI%20and%20Deep%E2%80%90Learning%20Radiomics%20Signatures&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Zhang,%20Yuze&rft.date=2024-09&rft.volume=60&rft.issue=3&rft.spage=909&rft.epage=920&rft.pages=909-920&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.29123&rft_dat=%3Cproquest_cross%3E2889587927%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3573-cb0b56e05af45ddfa8bf9e98dd5f885ee0e9be8efeffd00627a75db4531abf323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3086894364&rft_id=info:pmid/37955154&rfr_iscdi=true