Loading…
Glioblastoma and Solitary Brain Metastasis: Differentiation by Integrating Demographic‐MRI and Deep‐Learning Radiomics Signatures
Background Studies have shown that deep‐learning radiomics (DLR) could help differentiate glioblastoma (GBM) from solitary brain metastasis (SBM), but whether integrating demographic‐MRI and DLR features can more accurately distinguish GBM from SBM remains uncertain. Purpose To construct and validat...
Saved in:
Published in: | Journal of magnetic resonance imaging 2024-09, Vol.60 (3), p.909-920 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3573-cb0b56e05af45ddfa8bf9e98dd5f885ee0e9be8efeffd00627a75db4531abf323 |
---|---|
cites | cdi_FETCH-LOGICAL-c3573-cb0b56e05af45ddfa8bf9e98dd5f885ee0e9be8efeffd00627a75db4531abf323 |
container_end_page | 920 |
container_issue | 3 |
container_start_page | 909 |
container_title | Journal of magnetic resonance imaging |
container_volume | 60 |
creator | Zhang, Yuze Zhang, Hongbo Zhang, Hanwen Ouyang, Ying Su, Ruru Yang, Wanqun Huang, Biao |
description | Background
Studies have shown that deep‐learning radiomics (DLR) could help differentiate glioblastoma (GBM) from solitary brain metastasis (SBM), but whether integrating demographic‐MRI and DLR features can more accurately distinguish GBM from SBM remains uncertain.
Purpose
To construct and validate a demographic‐MRI deep‐learning radiomics nomogram (DDLRN) integrating demographic‐MRI and DLR signatures to differentiate GBM from SBM preoperatively.
Study Type
Retrospective.
Population
Two hundred and thirty‐five patients with GBM (N = 115) or SBM (N = 120), randomly divided into a training cohort (90 GBM and 98 SBM) and a validation cohort (25 GBM and 22 SBM).
Field Strength/Sequence
Axial T2‐weighted fast spin‐echo sequence (T2WI), T2‐weighted fluid‐attenuated inversion recovery sequence (T2‐FLAIR), and contrast‐enhanced T1‐weighted spin‐echo sequence (CE‐T1WI) using 1.5‐T and 3.0‐T scanners.
Assessment
The demographic‐MRI signature was constructed with seven imaging features (“pool sign,” “irregular ring sign,” “regular ring sign,” “intratumoral vessel sign,” the ratio of the area of peritumoral edema to the enhanced tumor, the ratio of the lesion area on T2‐FLAIR to CE‐T1WI, and the tumor location) and demographic factors (age and sex). Based on multiparametric MRI, radiomics and deep‐learning (DL) models, DLR signature, and DDLRN were developed and validated.
Statistical Tests
The Mann–Whitney U test, Pearson test, least absolute shrinkage and selection operator, and support vector machine algorithm were applied for feature selection and construction of radiomics and DL models.
Results
DDLRN showed the best performance in differentiating GBM from SBM with area under the curves (AUCs) of 0.999 and 0.947 in the training and validation cohorts, respectively. Additionally, the DLR signature (AUC = 0.938) outperformed the radiomics and DL models, and the demographic‐MRI signature (AUC = 0.775) was comparable to the T2‐FLAIR radiomics and DL models in the validation cohort (AUC = 0.762 and 0.749, respectively).
Data Conclusion
DDLRN integrating demographic‐MRI and DLR signatures showed excellent performance in differentiating GBM from SBM.
Level of Evidence
3
Technical Efficacy
Stage 2 |
doi_str_mv | 10.1002/jmri.29123 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2889587927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2889587927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3573-cb0b56e05af45ddfa8bf9e98dd5f885ee0e9be8efeffd00627a75db4531abf323</originalsourceid><addsrcrecordid>eNp9kT1vFDEQhlcIRD6g4QcgSzQo0gZ_rHdtOshBOHQRUgK1Za_Hh0-79sXeFbqOhp7fyC_BlwsUFFQzo3n0aDRvVT0j-JxgTF9txuTPqSSUPaiOCae0ply0D0uPOauJwN1RdZLzBmMsZcMfV0esk5wT3hxXPy4HH82g8xRHjXSw6CYOftJph94m7QO6gqksdfb5NVp45yBBmLyefAzI7NAyTLBOZQxrtIAxln771fe_vv-8ul7e-RYA2zKuQKewp6619XH0fUY3fh30NCfIT6pHTg8Znt7X0-rL-3efLz7Uq0-Xy4s3q7pnvGN1b7DhLWCuXcOtdVoYJ0EKa7kTggNgkAYEOHDOYtzSTnfcmoYzoo1jlJ1WLw_ebYq3M-RJjT73MAw6QJyzokJILjpJu4K--AfdxDmFcp1iWLRCNqxtCnV2oPoUc07g1Db5sXxPEaz24ah9OOounAI_v1fOZgT7F_2TRgHIAfjmB9j9R6U-lu8epL8Bwaeeyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086894364</pqid></control><display><type>article</type><title>Glioblastoma and Solitary Brain Metastasis: Differentiation by Integrating Demographic‐MRI and Deep‐Learning Radiomics Signatures</title><source>Wiley</source><creator>Zhang, Yuze ; Zhang, Hongbo ; Zhang, Hanwen ; Ouyang, Ying ; Su, Ruru ; Yang, Wanqun ; Huang, Biao</creator><creatorcontrib>Zhang, Yuze ; Zhang, Hongbo ; Zhang, Hanwen ; Ouyang, Ying ; Su, Ruru ; Yang, Wanqun ; Huang, Biao</creatorcontrib><description>Background
Studies have shown that deep‐learning radiomics (DLR) could help differentiate glioblastoma (GBM) from solitary brain metastasis (SBM), but whether integrating demographic‐MRI and DLR features can more accurately distinguish GBM from SBM remains uncertain.
Purpose
To construct and validate a demographic‐MRI deep‐learning radiomics nomogram (DDLRN) integrating demographic‐MRI and DLR signatures to differentiate GBM from SBM preoperatively.
Study Type
Retrospective.
Population
Two hundred and thirty‐five patients with GBM (N = 115) or SBM (N = 120), randomly divided into a training cohort (90 GBM and 98 SBM) and a validation cohort (25 GBM and 22 SBM).
Field Strength/Sequence
Axial T2‐weighted fast spin‐echo sequence (T2WI), T2‐weighted fluid‐attenuated inversion recovery sequence (T2‐FLAIR), and contrast‐enhanced T1‐weighted spin‐echo sequence (CE‐T1WI) using 1.5‐T and 3.0‐T scanners.
Assessment
The demographic‐MRI signature was constructed with seven imaging features (“pool sign,” “irregular ring sign,” “regular ring sign,” “intratumoral vessel sign,” the ratio of the area of peritumoral edema to the enhanced tumor, the ratio of the lesion area on T2‐FLAIR to CE‐T1WI, and the tumor location) and demographic factors (age and sex). Based on multiparametric MRI, radiomics and deep‐learning (DL) models, DLR signature, and DDLRN were developed and validated.
Statistical Tests
The Mann–Whitney U test, Pearson test, least absolute shrinkage and selection operator, and support vector machine algorithm were applied for feature selection and construction of radiomics and DL models.
Results
DDLRN showed the best performance in differentiating GBM from SBM with area under the curves (AUCs) of 0.999 and 0.947 in the training and validation cohorts, respectively. Additionally, the DLR signature (AUC = 0.938) outperformed the radiomics and DL models, and the demographic‐MRI signature (AUC = 0.775) was comparable to the T2‐FLAIR radiomics and DL models in the validation cohort (AUC = 0.762 and 0.749, respectively).
Data Conclusion
DDLRN integrating demographic‐MRI and DLR signatures showed excellent performance in differentiating GBM from SBM.
Level of Evidence
3
Technical Efficacy
Stage 2</description><identifier>ISSN: 1053-1807</identifier><identifier>ISSN: 1522-2586</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.29123</identifier><identifier>PMID: 37955154</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Adult ; Aged ; Algorithms ; Brain ; Brain - diagnostic imaging ; Brain cancer ; Brain Neoplasms - diagnostic imaging ; Brain Neoplasms - secondary ; Deep Learning ; Demographics ; Demography ; Diagnosis, Differential ; Edema ; Female ; Field strength ; Glioblastoma ; Glioblastoma - diagnostic imaging ; Glioma ; Humans ; Learning ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Male ; Metastases ; Metastasis ; Middle Aged ; multiparametric ; Neuroimaging ; Nomograms ; Population studies ; radiographic features ; Radiomics ; Retrospective Studies ; Signatures ; solitary brain metastasis ; Statistical analysis ; Statistical models ; Statistical tests ; Support vector machines ; Training ; Tumors</subject><ispartof>Journal of magnetic resonance imaging, 2024-09, Vol.60 (3), p.909-920</ispartof><rights>2023 International Society for Magnetic Resonance in Medicine.</rights><rights>2024 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3573-cb0b56e05af45ddfa8bf9e98dd5f885ee0e9be8efeffd00627a75db4531abf323</citedby><cites>FETCH-LOGICAL-c3573-cb0b56e05af45ddfa8bf9e98dd5f885ee0e9be8efeffd00627a75db4531abf323</cites><orcidid>0000-0002-0423-9671 ; 0000-0001-7915-5993 ; 0000-0002-6602-7340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37955154$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yuze</creatorcontrib><creatorcontrib>Zhang, Hongbo</creatorcontrib><creatorcontrib>Zhang, Hanwen</creatorcontrib><creatorcontrib>Ouyang, Ying</creatorcontrib><creatorcontrib>Su, Ruru</creatorcontrib><creatorcontrib>Yang, Wanqun</creatorcontrib><creatorcontrib>Huang, Biao</creatorcontrib><title>Glioblastoma and Solitary Brain Metastasis: Differentiation by Integrating Demographic‐MRI and Deep‐Learning Radiomics Signatures</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Background
Studies have shown that deep‐learning radiomics (DLR) could help differentiate glioblastoma (GBM) from solitary brain metastasis (SBM), but whether integrating demographic‐MRI and DLR features can more accurately distinguish GBM from SBM remains uncertain.
Purpose
To construct and validate a demographic‐MRI deep‐learning radiomics nomogram (DDLRN) integrating demographic‐MRI and DLR signatures to differentiate GBM from SBM preoperatively.
Study Type
Retrospective.
Population
Two hundred and thirty‐five patients with GBM (N = 115) or SBM (N = 120), randomly divided into a training cohort (90 GBM and 98 SBM) and a validation cohort (25 GBM and 22 SBM).
Field Strength/Sequence
Axial T2‐weighted fast spin‐echo sequence (T2WI), T2‐weighted fluid‐attenuated inversion recovery sequence (T2‐FLAIR), and contrast‐enhanced T1‐weighted spin‐echo sequence (CE‐T1WI) using 1.5‐T and 3.0‐T scanners.
Assessment
The demographic‐MRI signature was constructed with seven imaging features (“pool sign,” “irregular ring sign,” “regular ring sign,” “intratumoral vessel sign,” the ratio of the area of peritumoral edema to the enhanced tumor, the ratio of the lesion area on T2‐FLAIR to CE‐T1WI, and the tumor location) and demographic factors (age and sex). Based on multiparametric MRI, radiomics and deep‐learning (DL) models, DLR signature, and DDLRN were developed and validated.
Statistical Tests
The Mann–Whitney U test, Pearson test, least absolute shrinkage and selection operator, and support vector machine algorithm were applied for feature selection and construction of radiomics and DL models.
Results
DDLRN showed the best performance in differentiating GBM from SBM with area under the curves (AUCs) of 0.999 and 0.947 in the training and validation cohorts, respectively. Additionally, the DLR signature (AUC = 0.938) outperformed the radiomics and DL models, and the demographic‐MRI signature (AUC = 0.775) was comparable to the T2‐FLAIR radiomics and DL models in the validation cohort (AUC = 0.762 and 0.749, respectively).
Data Conclusion
DDLRN integrating demographic‐MRI and DLR signatures showed excellent performance in differentiating GBM from SBM.
Level of Evidence
3
Technical Efficacy
Stage 2</description><subject>Adult</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Brain Neoplasms - secondary</subject><subject>Deep Learning</subject><subject>Demographics</subject><subject>Demography</subject><subject>Diagnosis, Differential</subject><subject>Edema</subject><subject>Female</subject><subject>Field strength</subject><subject>Glioblastoma</subject><subject>Glioblastoma - diagnostic imaging</subject><subject>Glioma</subject><subject>Humans</subject><subject>Learning</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Middle Aged</subject><subject>multiparametric</subject><subject>Neuroimaging</subject><subject>Nomograms</subject><subject>Population studies</subject><subject>radiographic features</subject><subject>Radiomics</subject><subject>Retrospective Studies</subject><subject>Signatures</subject><subject>solitary brain metastasis</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Statistical tests</subject><subject>Support vector machines</subject><subject>Training</subject><subject>Tumors</subject><issn>1053-1807</issn><issn>1522-2586</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kT1vFDEQhlcIRD6g4QcgSzQo0gZ_rHdtOshBOHQRUgK1Za_Hh0-79sXeFbqOhp7fyC_BlwsUFFQzo3n0aDRvVT0j-JxgTF9txuTPqSSUPaiOCae0ply0D0uPOauJwN1RdZLzBmMsZcMfV0esk5wT3hxXPy4HH82g8xRHjXSw6CYOftJph94m7QO6gqksdfb5NVp45yBBmLyefAzI7NAyTLBOZQxrtIAxln771fe_vv-8ul7e-RYA2zKuQKewp6619XH0fUY3fh30NCfIT6pHTg8Znt7X0-rL-3efLz7Uq0-Xy4s3q7pnvGN1b7DhLWCuXcOtdVoYJ0EKa7kTggNgkAYEOHDOYtzSTnfcmoYzoo1jlJ1WLw_ebYq3M-RJjT73MAw6QJyzokJILjpJu4K--AfdxDmFcp1iWLRCNqxtCnV2oPoUc07g1Db5sXxPEaz24ah9OOounAI_v1fOZgT7F_2TRgHIAfjmB9j9R6U-lu8epL8Bwaeeyw</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Zhang, Yuze</creator><creator>Zhang, Hongbo</creator><creator>Zhang, Hanwen</creator><creator>Ouyang, Ying</creator><creator>Su, Ruru</creator><creator>Yang, Wanqun</creator><creator>Huang, Biao</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0423-9671</orcidid><orcidid>https://orcid.org/0000-0001-7915-5993</orcidid><orcidid>https://orcid.org/0000-0002-6602-7340</orcidid></search><sort><creationdate>202409</creationdate><title>Glioblastoma and Solitary Brain Metastasis: Differentiation by Integrating Demographic‐MRI and Deep‐Learning Radiomics Signatures</title><author>Zhang, Yuze ; Zhang, Hongbo ; Zhang, Hanwen ; Ouyang, Ying ; Su, Ruru ; Yang, Wanqun ; Huang, Biao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3573-cb0b56e05af45ddfa8bf9e98dd5f885ee0e9be8efeffd00627a75db4531abf323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Brain Neoplasms - secondary</topic><topic>Deep Learning</topic><topic>Demographics</topic><topic>Demography</topic><topic>Diagnosis, Differential</topic><topic>Edema</topic><topic>Female</topic><topic>Field strength</topic><topic>Glioblastoma</topic><topic>Glioblastoma - diagnostic imaging</topic><topic>Glioma</topic><topic>Humans</topic><topic>Learning</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Middle Aged</topic><topic>multiparametric</topic><topic>Neuroimaging</topic><topic>Nomograms</topic><topic>Population studies</topic><topic>radiographic features</topic><topic>Radiomics</topic><topic>Retrospective Studies</topic><topic>Signatures</topic><topic>solitary brain metastasis</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Statistical tests</topic><topic>Support vector machines</topic><topic>Training</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuze</creatorcontrib><creatorcontrib>Zhang, Hongbo</creatorcontrib><creatorcontrib>Zhang, Hanwen</creatorcontrib><creatorcontrib>Ouyang, Ying</creatorcontrib><creatorcontrib>Su, Ruru</creatorcontrib><creatorcontrib>Yang, Wanqun</creatorcontrib><creatorcontrib>Huang, Biao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuze</au><au>Zhang, Hongbo</au><au>Zhang, Hanwen</au><au>Ouyang, Ying</au><au>Su, Ruru</au><au>Yang, Wanqun</au><au>Huang, Biao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glioblastoma and Solitary Brain Metastasis: Differentiation by Integrating Demographic‐MRI and Deep‐Learning Radiomics Signatures</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2024-09</date><risdate>2024</risdate><volume>60</volume><issue>3</issue><spage>909</spage><epage>920</epage><pages>909-920</pages><issn>1053-1807</issn><issn>1522-2586</issn><eissn>1522-2586</eissn><abstract>Background
Studies have shown that deep‐learning radiomics (DLR) could help differentiate glioblastoma (GBM) from solitary brain metastasis (SBM), but whether integrating demographic‐MRI and DLR features can more accurately distinguish GBM from SBM remains uncertain.
Purpose
To construct and validate a demographic‐MRI deep‐learning radiomics nomogram (DDLRN) integrating demographic‐MRI and DLR signatures to differentiate GBM from SBM preoperatively.
Study Type
Retrospective.
Population
Two hundred and thirty‐five patients with GBM (N = 115) or SBM (N = 120), randomly divided into a training cohort (90 GBM and 98 SBM) and a validation cohort (25 GBM and 22 SBM).
Field Strength/Sequence
Axial T2‐weighted fast spin‐echo sequence (T2WI), T2‐weighted fluid‐attenuated inversion recovery sequence (T2‐FLAIR), and contrast‐enhanced T1‐weighted spin‐echo sequence (CE‐T1WI) using 1.5‐T and 3.0‐T scanners.
Assessment
The demographic‐MRI signature was constructed with seven imaging features (“pool sign,” “irregular ring sign,” “regular ring sign,” “intratumoral vessel sign,” the ratio of the area of peritumoral edema to the enhanced tumor, the ratio of the lesion area on T2‐FLAIR to CE‐T1WI, and the tumor location) and demographic factors (age and sex). Based on multiparametric MRI, radiomics and deep‐learning (DL) models, DLR signature, and DDLRN were developed and validated.
Statistical Tests
The Mann–Whitney U test, Pearson test, least absolute shrinkage and selection operator, and support vector machine algorithm were applied for feature selection and construction of radiomics and DL models.
Results
DDLRN showed the best performance in differentiating GBM from SBM with area under the curves (AUCs) of 0.999 and 0.947 in the training and validation cohorts, respectively. Additionally, the DLR signature (AUC = 0.938) outperformed the radiomics and DL models, and the demographic‐MRI signature (AUC = 0.775) was comparable to the T2‐FLAIR radiomics and DL models in the validation cohort (AUC = 0.762 and 0.749, respectively).
Data Conclusion
DDLRN integrating demographic‐MRI and DLR signatures showed excellent performance in differentiating GBM from SBM.
Level of Evidence
3
Technical Efficacy
Stage 2</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>37955154</pmid><doi>10.1002/jmri.29123</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0423-9671</orcidid><orcidid>https://orcid.org/0000-0001-7915-5993</orcidid><orcidid>https://orcid.org/0000-0002-6602-7340</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-1807 |
ispartof | Journal of magnetic resonance imaging, 2024-09, Vol.60 (3), p.909-920 |
issn | 1053-1807 1522-2586 1522-2586 |
language | eng |
recordid | cdi_proquest_miscellaneous_2889587927 |
source | Wiley |
subjects | Adult Aged Algorithms Brain Brain - diagnostic imaging Brain cancer Brain Neoplasms - diagnostic imaging Brain Neoplasms - secondary Deep Learning Demographics Demography Diagnosis, Differential Edema Female Field strength Glioblastoma Glioblastoma - diagnostic imaging Glioma Humans Learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Metastases Metastasis Middle Aged multiparametric Neuroimaging Nomograms Population studies radiographic features Radiomics Retrospective Studies Signatures solitary brain metastasis Statistical analysis Statistical models Statistical tests Support vector machines Training Tumors |
title | Glioblastoma and Solitary Brain Metastasis: Differentiation by Integrating Demographic‐MRI and Deep‐Learning Radiomics Signatures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A07%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glioblastoma%20and%20Solitary%20Brain%20Metastasis:%20Differentiation%20by%20Integrating%20Demographic%E2%80%90MRI%20and%20Deep%E2%80%90Learning%20Radiomics%20Signatures&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Zhang,%20Yuze&rft.date=2024-09&rft.volume=60&rft.issue=3&rft.spage=909&rft.epage=920&rft.pages=909-920&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.29123&rft_dat=%3Cproquest_cross%3E2889587927%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3573-cb0b56e05af45ddfa8bf9e98dd5f885ee0e9be8efeffd00627a75db4531abf323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3086894364&rft_id=info:pmid/37955154&rfr_iscdi=true |