Loading…

Revealing the CO2 Conversion at Electrode/Electrolyte Interfaces in Li–CO2 Batteries via Nanoscale Visualization Methods

Lithium–carbon dioxide (Li–CO2) battery technology presents a promising opportunity for carbon capture and energy storage. Despite tremendous efforts in Li–CO2 batteries, the complex electrode/electrolyte/CO2 triple‐phase interfacial processes remain poorly understood, in particular at the nanoscale...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2024-01, Vol.63 (1), p.e202316781-n/a
Main Authors: Shen, Zhen‐Zhen, Lang, Shuang‐Yan, Liu, Rui‐Zhi, Zhou, Chi, Zhang, Yao‐Zu, Liu, Bing, Wen, Rui
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 1
container_start_page e202316781
container_title Angewandte Chemie International Edition
container_volume 63
creator Shen, Zhen‐Zhen
Lang, Shuang‐Yan
Liu, Rui‐Zhi
Zhou, Chi
Zhang, Yao‐Zu
Liu, Bing
Wen, Rui
description Lithium–carbon dioxide (Li–CO2) battery technology presents a promising opportunity for carbon capture and energy storage. Despite tremendous efforts in Li–CO2 batteries, the complex electrode/electrolyte/CO2 triple‐phase interfacial processes remain poorly understood, in particular at the nanoscale. Here, using in situ atomic force microscopy and laser confocal microscopy‐differential interference contrast microscopy, we directly observed the CO2 conversion processes in Li–CO2 batteries at the nanoscale, and further revealed a laser‐tuned reaction pathway based on the real‐time observations. During discharge, a bi‐component composite, Li2CO3/C, deposits as micron‐sized clusters through a 3D progressive growth model, followed by a 3D decomposition pathway during the subsequent recharge. When the cell operates under laser (λ=405 nm) irradiation, densely packed Li2CO3/C flakes deposit rapidly during discharge. Upon the recharge, they predominantly decompose at the interfaces of the flake and electrode, detaching themselves from the electrode and causing irreversible capacity degradation. In situ Raman shows that the laser promotes the formation of poorly soluble intermediates, Li2C2O4, which in turn affects growth/decomposition pathways of Li2CO3/C and the cell performance. Our findings provide mechanistic insights into interfacial evolution in Li–CO2 batteries and the laser‐tuned CO2 conversion reactions, which can inspire strategies of monitoring and controlling the multistep and multiphase interfacial reactions in advanced electrochemical devices. Using in situ atomic force microscopy, laser confocal microscopy‐differential interference contrast microscopy and Raman spectroscopy, we explored the electrode/electrolyte interfacial evolution in Li–CO2 batteries. The results indicate that the laser alters the reaction pathways of the CO2 reduction processes, which changes the morphological evolution of the discharge products at the interfaces, and in turn, affects the cell performance.
doi_str_mv 10.1002/anie.202316781
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2889588782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2906655629</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2661-bce6df4c5ee1de7a65fbff547c1402fea1152edcc07a0665448188938847f7cc3</originalsourceid><addsrcrecordid>eNpdkcFOAjEQhjdGExG9em7ixctC291tu0ckqCQIiVGvTenOSsnSxW3BwMl38A19EruBePA0M3--_tP2j6JrgnsEY9pX1kCPYpoQxgU5iTokoyROOE9OQ58mScxFRs6jC-eWgRcCs060f4YtqMrYd-QXgIYzioa13ULjTG2R8mhUgfZNXUD_2FU7D2hsPTSl0uCQsWhifr6-26N3ygfdBHVrFJoqWzutKkBvxm3Ckr3yresT-EVduMvorFSVg6tj7Uav96OX4WM8mT2Mh4NJvKaMkXiugRVlqjMAUgBXLCvnZZmlXJMU0xIUCe-EQmvMFWYsS1NBhMgTIVJecq2TbnR78F039ccGnJcr4zRUlbJQb5wMP5FnQnBBA3rzD13Wm8aG20mat-YZo3mg8gP1aSrYyXVjVqrZSYJlm4Nsc5B_OcjBdDz6m5Jf7SWAWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906655629</pqid></control><display><type>article</type><title>Revealing the CO2 Conversion at Electrode/Electrolyte Interfaces in Li–CO2 Batteries via Nanoscale Visualization Methods</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Shen, Zhen‐Zhen ; Lang, Shuang‐Yan ; Liu, Rui‐Zhi ; Zhou, Chi ; Zhang, Yao‐Zu ; Liu, Bing ; Wen, Rui</creator><creatorcontrib>Shen, Zhen‐Zhen ; Lang, Shuang‐Yan ; Liu, Rui‐Zhi ; Zhou, Chi ; Zhang, Yao‐Zu ; Liu, Bing ; Wen, Rui</creatorcontrib><description>Lithium–carbon dioxide (Li–CO2) battery technology presents a promising opportunity for carbon capture and energy storage. Despite tremendous efforts in Li–CO2 batteries, the complex electrode/electrolyte/CO2 triple‐phase interfacial processes remain poorly understood, in particular at the nanoscale. Here, using in situ atomic force microscopy and laser confocal microscopy‐differential interference contrast microscopy, we directly observed the CO2 conversion processes in Li–CO2 batteries at the nanoscale, and further revealed a laser‐tuned reaction pathway based on the real‐time observations. During discharge, a bi‐component composite, Li2CO3/C, deposits as micron‐sized clusters through a 3D progressive growth model, followed by a 3D decomposition pathway during the subsequent recharge. When the cell operates under laser (λ=405 nm) irradiation, densely packed Li2CO3/C flakes deposit rapidly during discharge. Upon the recharge, they predominantly decompose at the interfaces of the flake and electrode, detaching themselves from the electrode and causing irreversible capacity degradation. In situ Raman shows that the laser promotes the formation of poorly soluble intermediates, Li2C2O4, which in turn affects growth/decomposition pathways of Li2CO3/C and the cell performance. Our findings provide mechanistic insights into interfacial evolution in Li–CO2 batteries and the laser‐tuned CO2 conversion reactions, which can inspire strategies of monitoring and controlling the multistep and multiphase interfacial reactions in advanced electrochemical devices. Using in situ atomic force microscopy, laser confocal microscopy‐differential interference contrast microscopy and Raman spectroscopy, we explored the electrode/electrolyte interfacial evolution in Li–CO2 batteries. The results indicate that the laser alters the reaction pathways of the CO2 reduction processes, which changes the morphological evolution of the discharge products at the interfaces, and in turn, affects the cell performance.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202316781</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Atomic force microscopy ; Batteries ; Carbon dioxide ; Carbon sequestration ; Chemical reactions ; Confocal microscopy ; Decomposition ; Differential Interference Contrast Microscopy ; Discharge ; Electrochemical Atomic Force Microscopy ; Electrochemistry ; Electrode/Electrolyte Interfaces ; Electrodes ; Electrolytes ; Energy storage ; Flakes ; Growth models ; In Situ Visualization ; Interface reactions ; Interfaces ; Intermediates ; Irradiation ; Lasers ; Lithium ; Lithium carbonate ; Li–CO2 Batteries ; Microscopy ; Recharge ; Three dimensional models</subject><ispartof>Angewandte Chemie International Edition, 2024-01, Vol.63 (1), p.e202316781-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2644-7452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shen, Zhen‐Zhen</creatorcontrib><creatorcontrib>Lang, Shuang‐Yan</creatorcontrib><creatorcontrib>Liu, Rui‐Zhi</creatorcontrib><creatorcontrib>Zhou, Chi</creatorcontrib><creatorcontrib>Zhang, Yao‐Zu</creatorcontrib><creatorcontrib>Liu, Bing</creatorcontrib><creatorcontrib>Wen, Rui</creatorcontrib><title>Revealing the CO2 Conversion at Electrode/Electrolyte Interfaces in Li–CO2 Batteries via Nanoscale Visualization Methods</title><title>Angewandte Chemie International Edition</title><description>Lithium–carbon dioxide (Li–CO2) battery technology presents a promising opportunity for carbon capture and energy storage. Despite tremendous efforts in Li–CO2 batteries, the complex electrode/electrolyte/CO2 triple‐phase interfacial processes remain poorly understood, in particular at the nanoscale. Here, using in situ atomic force microscopy and laser confocal microscopy‐differential interference contrast microscopy, we directly observed the CO2 conversion processes in Li–CO2 batteries at the nanoscale, and further revealed a laser‐tuned reaction pathway based on the real‐time observations. During discharge, a bi‐component composite, Li2CO3/C, deposits as micron‐sized clusters through a 3D progressive growth model, followed by a 3D decomposition pathway during the subsequent recharge. When the cell operates under laser (λ=405 nm) irradiation, densely packed Li2CO3/C flakes deposit rapidly during discharge. Upon the recharge, they predominantly decompose at the interfaces of the flake and electrode, detaching themselves from the electrode and causing irreversible capacity degradation. In situ Raman shows that the laser promotes the formation of poorly soluble intermediates, Li2C2O4, which in turn affects growth/decomposition pathways of Li2CO3/C and the cell performance. Our findings provide mechanistic insights into interfacial evolution in Li–CO2 batteries and the laser‐tuned CO2 conversion reactions, which can inspire strategies of monitoring and controlling the multistep and multiphase interfacial reactions in advanced electrochemical devices. Using in situ atomic force microscopy, laser confocal microscopy‐differential interference contrast microscopy and Raman spectroscopy, we explored the electrode/electrolyte interfacial evolution in Li–CO2 batteries. The results indicate that the laser alters the reaction pathways of the CO2 reduction processes, which changes the morphological evolution of the discharge products at the interfaces, and in turn, affects the cell performance.</description><subject>Atomic force microscopy</subject><subject>Batteries</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Chemical reactions</subject><subject>Confocal microscopy</subject><subject>Decomposition</subject><subject>Differential Interference Contrast Microscopy</subject><subject>Discharge</subject><subject>Electrochemical Atomic Force Microscopy</subject><subject>Electrochemistry</subject><subject>Electrode/Electrolyte Interfaces</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>Flakes</subject><subject>Growth models</subject><subject>In Situ Visualization</subject><subject>Interface reactions</subject><subject>Interfaces</subject><subject>Intermediates</subject><subject>Irradiation</subject><subject>Lasers</subject><subject>Lithium</subject><subject>Lithium carbonate</subject><subject>Li–CO2 Batteries</subject><subject>Microscopy</subject><subject>Recharge</subject><subject>Three dimensional models</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkcFOAjEQhjdGExG9em7ixctC291tu0ckqCQIiVGvTenOSsnSxW3BwMl38A19EruBePA0M3--_tP2j6JrgnsEY9pX1kCPYpoQxgU5iTokoyROOE9OQ58mScxFRs6jC-eWgRcCs060f4YtqMrYd-QXgIYzioa13ULjTG2R8mhUgfZNXUD_2FU7D2hsPTSl0uCQsWhifr6-26N3ygfdBHVrFJoqWzutKkBvxm3Ckr3yresT-EVduMvorFSVg6tj7Uav96OX4WM8mT2Mh4NJvKaMkXiugRVlqjMAUgBXLCvnZZmlXJMU0xIUCe-EQmvMFWYsS1NBhMgTIVJecq2TbnR78F039ccGnJcr4zRUlbJQb5wMP5FnQnBBA3rzD13Wm8aG20mat-YZo3mg8gP1aSrYyXVjVqrZSYJlm4Nsc5B_OcjBdDz6m5Jf7SWAWA</recordid><startdate>20240102</startdate><enddate>20240102</enddate><creator>Shen, Zhen‐Zhen</creator><creator>Lang, Shuang‐Yan</creator><creator>Liu, Rui‐Zhi</creator><creator>Zhou, Chi</creator><creator>Zhang, Yao‐Zu</creator><creator>Liu, Bing</creator><creator>Wen, Rui</creator><general>Wiley Subscription Services, Inc</general><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2644-7452</orcidid></search><sort><creationdate>20240102</creationdate><title>Revealing the CO2 Conversion at Electrode/Electrolyte Interfaces in Li–CO2 Batteries via Nanoscale Visualization Methods</title><author>Shen, Zhen‐Zhen ; Lang, Shuang‐Yan ; Liu, Rui‐Zhi ; Zhou, Chi ; Zhang, Yao‐Zu ; Liu, Bing ; Wen, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2661-bce6df4c5ee1de7a65fbff547c1402fea1152edcc07a0665448188938847f7cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atomic force microscopy</topic><topic>Batteries</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Chemical reactions</topic><topic>Confocal microscopy</topic><topic>Decomposition</topic><topic>Differential Interference Contrast Microscopy</topic><topic>Discharge</topic><topic>Electrochemical Atomic Force Microscopy</topic><topic>Electrochemistry</topic><topic>Electrode/Electrolyte Interfaces</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>Flakes</topic><topic>Growth models</topic><topic>In Situ Visualization</topic><topic>Interface reactions</topic><topic>Interfaces</topic><topic>Intermediates</topic><topic>Irradiation</topic><topic>Lasers</topic><topic>Lithium</topic><topic>Lithium carbonate</topic><topic>Li–CO2 Batteries</topic><topic>Microscopy</topic><topic>Recharge</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Zhen‐Zhen</creatorcontrib><creatorcontrib>Lang, Shuang‐Yan</creatorcontrib><creatorcontrib>Liu, Rui‐Zhi</creatorcontrib><creatorcontrib>Zhou, Chi</creatorcontrib><creatorcontrib>Zhang, Yao‐Zu</creatorcontrib><creatorcontrib>Liu, Bing</creatorcontrib><creatorcontrib>Wen, Rui</creatorcontrib><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Zhen‐Zhen</au><au>Lang, Shuang‐Yan</au><au>Liu, Rui‐Zhi</au><au>Zhou, Chi</au><au>Zhang, Yao‐Zu</au><au>Liu, Bing</au><au>Wen, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing the CO2 Conversion at Electrode/Electrolyte Interfaces in Li–CO2 Batteries via Nanoscale Visualization Methods</atitle><jtitle>Angewandte Chemie International Edition</jtitle><date>2024-01-02</date><risdate>2024</risdate><volume>63</volume><issue>1</issue><spage>e202316781</spage><epage>n/a</epage><pages>e202316781-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Lithium–carbon dioxide (Li–CO2) battery technology presents a promising opportunity for carbon capture and energy storage. Despite tremendous efforts in Li–CO2 batteries, the complex electrode/electrolyte/CO2 triple‐phase interfacial processes remain poorly understood, in particular at the nanoscale. Here, using in situ atomic force microscopy and laser confocal microscopy‐differential interference contrast microscopy, we directly observed the CO2 conversion processes in Li–CO2 batteries at the nanoscale, and further revealed a laser‐tuned reaction pathway based on the real‐time observations. During discharge, a bi‐component composite, Li2CO3/C, deposits as micron‐sized clusters through a 3D progressive growth model, followed by a 3D decomposition pathway during the subsequent recharge. When the cell operates under laser (λ=405 nm) irradiation, densely packed Li2CO3/C flakes deposit rapidly during discharge. Upon the recharge, they predominantly decompose at the interfaces of the flake and electrode, detaching themselves from the electrode and causing irreversible capacity degradation. In situ Raman shows that the laser promotes the formation of poorly soluble intermediates, Li2C2O4, which in turn affects growth/decomposition pathways of Li2CO3/C and the cell performance. Our findings provide mechanistic insights into interfacial evolution in Li–CO2 batteries and the laser‐tuned CO2 conversion reactions, which can inspire strategies of monitoring and controlling the multistep and multiphase interfacial reactions in advanced electrochemical devices. Using in situ atomic force microscopy, laser confocal microscopy‐differential interference contrast microscopy and Raman spectroscopy, we explored the electrode/electrolyte interfacial evolution in Li–CO2 batteries. The results indicate that the laser alters the reaction pathways of the CO2 reduction processes, which changes the morphological evolution of the discharge products at the interfaces, and in turn, affects the cell performance.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/anie.202316781</doi><tpages>9</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-2644-7452</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2024-01, Vol.63 (1), p.e202316781-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2889588782
source Wiley-Blackwell Read & Publish Collection
subjects Atomic force microscopy
Batteries
Carbon dioxide
Carbon sequestration
Chemical reactions
Confocal microscopy
Decomposition
Differential Interference Contrast Microscopy
Discharge
Electrochemical Atomic Force Microscopy
Electrochemistry
Electrode/Electrolyte Interfaces
Electrodes
Electrolytes
Energy storage
Flakes
Growth models
In Situ Visualization
Interface reactions
Interfaces
Intermediates
Irradiation
Lasers
Lithium
Lithium carbonate
Li–CO2 Batteries
Microscopy
Recharge
Three dimensional models
title Revealing the CO2 Conversion at Electrode/Electrolyte Interfaces in Li–CO2 Batteries via Nanoscale Visualization Methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T06%3A46%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20the%20CO2%20Conversion%20at%20Electrode/Electrolyte%20Interfaces%20in%20Li%E2%80%93CO2%20Batteries%20via%20Nanoscale%20Visualization%20Methods&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Shen,%20Zhen%E2%80%90Zhen&rft.date=2024-01-02&rft.volume=63&rft.issue=1&rft.spage=e202316781&rft.epage=n/a&rft.pages=e202316781-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202316781&rft_dat=%3Cproquest_wiley%3E2906655629%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2661-bce6df4c5ee1de7a65fbff547c1402fea1152edcc07a0665448188938847f7cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2906655629&rft_id=info:pmid/&rfr_iscdi=true