Loading…
Aluminium dross waste utilization for phosphate removal and recovery from aqueous environment: Operational feasibility development
The need to minimize eutrophication in water bodies and the shortage of phosphate rock reserves has stimulated the search for sequestration and recovery of phosphate from alternative sources, including wastewater. In this study, aluminium dross (AD), a smelting industry waste/by-product, was convert...
Saved in:
Published in: | Chemosphere (Oxford) 2024-02, Vol.349, p.140649-140649, Article 140649 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-cbcd78b84748ee006efa9455f50fb7b08c11f6f4e3bc15328540d7d114a682db3 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-cbcd78b84748ee006efa9455f50fb7b08c11f6f4e3bc15328540d7d114a682db3 |
container_end_page | 140649 |
container_issue | |
container_start_page | 140649 |
container_title | Chemosphere (Oxford) |
container_volume | 349 |
creator | Mittal, Yamini Srivastava, Pratiksha Tripathy, Bankim Chandra Dhal, Nabin Kumar Martinez, Fernando Kumar, Naresh Yadav, Asheesh Kumar |
description | The need to minimize eutrophication in water bodies and the shortage of phosphate rock reserves has stimulated the search for sequestration and recovery of phosphate from alternative sources, including wastewater. In this study, aluminium dross (AD), a smelting industry waste/by-product, was converted to high-value material by encapsulation in calcium alginate (Ca-Alg) beads, viz. Ca-Alg-AD and utilized for adsorptive/uptake removal and phosphate recovery from an aqueous environment. Encapsulation of AD in alginate beads solves serious operational difficulties of using raw AD material directly due to density difference constraining efficient contact of AD with pollutants present in water and post-treatment recovery of AD material. The phosphate removal was evaluated in both batch and continuous flow operation modes. The batch adsorption study revealed 96.86% phosphate removal from 10 mg L−1 of initial phosphate concentration in 70 min of optimal contact time. Further, the phosphate removal potential of Ca-Alg-AD beads turned out to be independent of solution pH, with an average of 95.93 ± 1.40 % phosphate removal in the 2–9 pH range. The result reflects phosphate adsorption on Ca-Alg-AD beads following a second-order pseudo-kinetic model. Ca-Alg-AD beads-based adsorption followed Freundlich and Langmuir isotherm models. Further, a continuous packed bed column study revealed a total phosphate adsorption capacity of 1.089 mg g−1. The chemical composition, physical stability, and surface properties of Ca-Alg-AD beads were analyzed by means of state-of-the-art analytical techniques, such as Scanning Electron Microscopy-Energy Dispersive X-ray spectroscopy (SEM-EDX), Fourier Transform Infrared Spectroscopy (FTIR) and thermogravimetry/Differential Thermal Analysis (TG/DTA). These characterization techniques comprehend the mechanism and influence of surface properties and morphology on the phosphate adsorption behaviour, which induce the involvement of multiple mechanisms such as ligand complexation, ion exchange, and electrostatic attraction for phosphate adsorption on Ca-Alg-AD beads.
[Display omitted]
•Ca-Alg-AD beads efficiently remove and recover phosphate from aqueous environment.•Use of raw AD in an aqueous environment is not feasible due to density difference.•Ca-Alg-AD beads have high regeneration capacity thus multiple times useable.•Ca-Alg-AD beads can function efficiently over a broad pH range from 2 to 9.•Ca-Alg-AD beads can be separated from water w |
doi_str_mv | 10.1016/j.chemosphere.2023.140649 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2889589989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653523029193</els_id><sourcerecordid>2889589989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-cbcd78b84748ee006efa9455f50fb7b08c11f6f4e3bc15328540d7d114a682db3</originalsourceid><addsrcrecordid>eNqNUU2P1SAUJUbjvBn9CwZ3bvoECi24m7yMH8kks9E1oXDJ46UtFdqaN0t_udQ3GpeuLsk9H5dzEHpLyZ4S2rw_7e0RhpinIyTYM8LqPeWk4eoZ2lHZqooyJZ-jHSFcVI2oxRW6zvlESCEL9RJd1a0STDKxQz9v-2UIY1gG7FLMGf8weQa8zKEPj2YOccQ-JjwdNzdTNqkYr6bHZnTlbeMK6Yx9igM23xeIS8YwriHFcYBx_oAfJki_ZQrFg8mhK8LzGTtYoY_TBnqFXnjTZ3j9NG_Qt493Xw-fq_uHT18Ot_eVZYrNle2sa2UnecslACENeKO4EF4Q37UdkZZS33gOdWepqJkUnLjWUcpNI5nr6hv07qI7pVhOzbMeQrbQ92bc7tZMSiWkUlIVqLpA7ZZJAq-nFAaTzpoSvVWgT_qfCvRWgb5UULhvnmyWbgD3l_kn8wI4XABQPrsGSDrbAKMFF0qgs3Yx_IfNLwEgomk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2889589989</pqid></control><display><type>article</type><title>Aluminium dross waste utilization for phosphate removal and recovery from aqueous environment: Operational feasibility development</title><source>ScienceDirect Freedom Collection</source><creator>Mittal, Yamini ; Srivastava, Pratiksha ; Tripathy, Bankim Chandra ; Dhal, Nabin Kumar ; Martinez, Fernando ; Kumar, Naresh ; Yadav, Asheesh Kumar</creator><creatorcontrib>Mittal, Yamini ; Srivastava, Pratiksha ; Tripathy, Bankim Chandra ; Dhal, Nabin Kumar ; Martinez, Fernando ; Kumar, Naresh ; Yadav, Asheesh Kumar</creatorcontrib><description>The need to minimize eutrophication in water bodies and the shortage of phosphate rock reserves has stimulated the search for sequestration and recovery of phosphate from alternative sources, including wastewater. In this study, aluminium dross (AD), a smelting industry waste/by-product, was converted to high-value material by encapsulation in calcium alginate (Ca-Alg) beads, viz. Ca-Alg-AD and utilized for adsorptive/uptake removal and phosphate recovery from an aqueous environment. Encapsulation of AD in alginate beads solves serious operational difficulties of using raw AD material directly due to density difference constraining efficient contact of AD with pollutants present in water and post-treatment recovery of AD material. The phosphate removal was evaluated in both batch and continuous flow operation modes. The batch adsorption study revealed 96.86% phosphate removal from 10 mg L−1 of initial phosphate concentration in 70 min of optimal contact time. Further, the phosphate removal potential of Ca-Alg-AD beads turned out to be independent of solution pH, with an average of 95.93 ± 1.40 % phosphate removal in the 2–9 pH range. The result reflects phosphate adsorption on Ca-Alg-AD beads following a second-order pseudo-kinetic model. Ca-Alg-AD beads-based adsorption followed Freundlich and Langmuir isotherm models. Further, a continuous packed bed column study revealed a total phosphate adsorption capacity of 1.089 mg g−1. The chemical composition, physical stability, and surface properties of Ca-Alg-AD beads were analyzed by means of state-of-the-art analytical techniques, such as Scanning Electron Microscopy-Energy Dispersive X-ray spectroscopy (SEM-EDX), Fourier Transform Infrared Spectroscopy (FTIR) and thermogravimetry/Differential Thermal Analysis (TG/DTA). These characterization techniques comprehend the mechanism and influence of surface properties and morphology on the phosphate adsorption behaviour, which induce the involvement of multiple mechanisms such as ligand complexation, ion exchange, and electrostatic attraction for phosphate adsorption on Ca-Alg-AD beads.
[Display omitted]
•Ca-Alg-AD beads efficiently remove and recover phosphate from aqueous environment.•Use of raw AD in an aqueous environment is not feasible due to density difference.•Ca-Alg-AD beads have high regeneration capacity thus multiple times useable.•Ca-Alg-AD beads can function efficiently over a broad pH range from 2 to 9.•Ca-Alg-AD beads can be separated from water without any chemical or energy input.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2023.140649</identifier><identifier>PMID: 37952825</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><ispartof>Chemosphere (Oxford), 2024-02, Vol.349, p.140649-140649, Article 140649</ispartof><rights>2023</rights><rights>Copyright © 2023. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-cbcd78b84748ee006efa9455f50fb7b08c11f6f4e3bc15328540d7d114a682db3</citedby><cites>FETCH-LOGICAL-c292t-cbcd78b84748ee006efa9455f50fb7b08c11f6f4e3bc15328540d7d114a682db3</cites><orcidid>0000-0002-2359-0627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37952825$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mittal, Yamini</creatorcontrib><creatorcontrib>Srivastava, Pratiksha</creatorcontrib><creatorcontrib>Tripathy, Bankim Chandra</creatorcontrib><creatorcontrib>Dhal, Nabin Kumar</creatorcontrib><creatorcontrib>Martinez, Fernando</creatorcontrib><creatorcontrib>Kumar, Naresh</creatorcontrib><creatorcontrib>Yadav, Asheesh Kumar</creatorcontrib><title>Aluminium dross waste utilization for phosphate removal and recovery from aqueous environment: Operational feasibility development</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>The need to minimize eutrophication in water bodies and the shortage of phosphate rock reserves has stimulated the search for sequestration and recovery of phosphate from alternative sources, including wastewater. In this study, aluminium dross (AD), a smelting industry waste/by-product, was converted to high-value material by encapsulation in calcium alginate (Ca-Alg) beads, viz. Ca-Alg-AD and utilized for adsorptive/uptake removal and phosphate recovery from an aqueous environment. Encapsulation of AD in alginate beads solves serious operational difficulties of using raw AD material directly due to density difference constraining efficient contact of AD with pollutants present in water and post-treatment recovery of AD material. The phosphate removal was evaluated in both batch and continuous flow operation modes. The batch adsorption study revealed 96.86% phosphate removal from 10 mg L−1 of initial phosphate concentration in 70 min of optimal contact time. Further, the phosphate removal potential of Ca-Alg-AD beads turned out to be independent of solution pH, with an average of 95.93 ± 1.40 % phosphate removal in the 2–9 pH range. The result reflects phosphate adsorption on Ca-Alg-AD beads following a second-order pseudo-kinetic model. Ca-Alg-AD beads-based adsorption followed Freundlich and Langmuir isotherm models. Further, a continuous packed bed column study revealed a total phosphate adsorption capacity of 1.089 mg g−1. The chemical composition, physical stability, and surface properties of Ca-Alg-AD beads were analyzed by means of state-of-the-art analytical techniques, such as Scanning Electron Microscopy-Energy Dispersive X-ray spectroscopy (SEM-EDX), Fourier Transform Infrared Spectroscopy (FTIR) and thermogravimetry/Differential Thermal Analysis (TG/DTA). These characterization techniques comprehend the mechanism and influence of surface properties and morphology on the phosphate adsorption behaviour, which induce the involvement of multiple mechanisms such as ligand complexation, ion exchange, and electrostatic attraction for phosphate adsorption on Ca-Alg-AD beads.
[Display omitted]
•Ca-Alg-AD beads efficiently remove and recover phosphate from aqueous environment.•Use of raw AD in an aqueous environment is not feasible due to density difference.•Ca-Alg-AD beads have high regeneration capacity thus multiple times useable.•Ca-Alg-AD beads can function efficiently over a broad pH range from 2 to 9.•Ca-Alg-AD beads can be separated from water without any chemical or energy input.</description><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNUU2P1SAUJUbjvBn9CwZ3bvoECi24m7yMH8kks9E1oXDJ46UtFdqaN0t_udQ3GpeuLsk9H5dzEHpLyZ4S2rw_7e0RhpinIyTYM8LqPeWk4eoZ2lHZqooyJZ-jHSFcVI2oxRW6zvlESCEL9RJd1a0STDKxQz9v-2UIY1gG7FLMGf8weQa8zKEPj2YOccQ-JjwdNzdTNqkYr6bHZnTlbeMK6Yx9igM23xeIS8YwriHFcYBx_oAfJki_ZQrFg8mhK8LzGTtYoY_TBnqFXnjTZ3j9NG_Qt493Xw-fq_uHT18Ot_eVZYrNle2sa2UnecslACENeKO4EF4Q37UdkZZS33gOdWepqJkUnLjWUcpNI5nr6hv07qI7pVhOzbMeQrbQ92bc7tZMSiWkUlIVqLpA7ZZJAq-nFAaTzpoSvVWgT_qfCvRWgb5UULhvnmyWbgD3l_kn8wI4XABQPrsGSDrbAKMFF0qgs3Yx_IfNLwEgomk</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Mittal, Yamini</creator><creator>Srivastava, Pratiksha</creator><creator>Tripathy, Bankim Chandra</creator><creator>Dhal, Nabin Kumar</creator><creator>Martinez, Fernando</creator><creator>Kumar, Naresh</creator><creator>Yadav, Asheesh Kumar</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2359-0627</orcidid></search><sort><creationdate>202402</creationdate><title>Aluminium dross waste utilization for phosphate removal and recovery from aqueous environment: Operational feasibility development</title><author>Mittal, Yamini ; Srivastava, Pratiksha ; Tripathy, Bankim Chandra ; Dhal, Nabin Kumar ; Martinez, Fernando ; Kumar, Naresh ; Yadav, Asheesh Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-cbcd78b84748ee006efa9455f50fb7b08c11f6f4e3bc15328540d7d114a682db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mittal, Yamini</creatorcontrib><creatorcontrib>Srivastava, Pratiksha</creatorcontrib><creatorcontrib>Tripathy, Bankim Chandra</creatorcontrib><creatorcontrib>Dhal, Nabin Kumar</creatorcontrib><creatorcontrib>Martinez, Fernando</creatorcontrib><creatorcontrib>Kumar, Naresh</creatorcontrib><creatorcontrib>Yadav, Asheesh Kumar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mittal, Yamini</au><au>Srivastava, Pratiksha</au><au>Tripathy, Bankim Chandra</au><au>Dhal, Nabin Kumar</au><au>Martinez, Fernando</au><au>Kumar, Naresh</au><au>Yadav, Asheesh Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aluminium dross waste utilization for phosphate removal and recovery from aqueous environment: Operational feasibility development</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2024-02</date><risdate>2024</risdate><volume>349</volume><spage>140649</spage><epage>140649</epage><pages>140649-140649</pages><artnum>140649</artnum><issn>0045-6535</issn><eissn>1879-1298</eissn><abstract>The need to minimize eutrophication in water bodies and the shortage of phosphate rock reserves has stimulated the search for sequestration and recovery of phosphate from alternative sources, including wastewater. In this study, aluminium dross (AD), a smelting industry waste/by-product, was converted to high-value material by encapsulation in calcium alginate (Ca-Alg) beads, viz. Ca-Alg-AD and utilized for adsorptive/uptake removal and phosphate recovery from an aqueous environment. Encapsulation of AD in alginate beads solves serious operational difficulties of using raw AD material directly due to density difference constraining efficient contact of AD with pollutants present in water and post-treatment recovery of AD material. The phosphate removal was evaluated in both batch and continuous flow operation modes. The batch adsorption study revealed 96.86% phosphate removal from 10 mg L−1 of initial phosphate concentration in 70 min of optimal contact time. Further, the phosphate removal potential of Ca-Alg-AD beads turned out to be independent of solution pH, with an average of 95.93 ± 1.40 % phosphate removal in the 2–9 pH range. The result reflects phosphate adsorption on Ca-Alg-AD beads following a second-order pseudo-kinetic model. Ca-Alg-AD beads-based adsorption followed Freundlich and Langmuir isotherm models. Further, a continuous packed bed column study revealed a total phosphate adsorption capacity of 1.089 mg g−1. The chemical composition, physical stability, and surface properties of Ca-Alg-AD beads were analyzed by means of state-of-the-art analytical techniques, such as Scanning Electron Microscopy-Energy Dispersive X-ray spectroscopy (SEM-EDX), Fourier Transform Infrared Spectroscopy (FTIR) and thermogravimetry/Differential Thermal Analysis (TG/DTA). These characterization techniques comprehend the mechanism and influence of surface properties and morphology on the phosphate adsorption behaviour, which induce the involvement of multiple mechanisms such as ligand complexation, ion exchange, and electrostatic attraction for phosphate adsorption on Ca-Alg-AD beads.
[Display omitted]
•Ca-Alg-AD beads efficiently remove and recover phosphate from aqueous environment.•Use of raw AD in an aqueous environment is not feasible due to density difference.•Ca-Alg-AD beads have high regeneration capacity thus multiple times useable.•Ca-Alg-AD beads can function efficiently over a broad pH range from 2 to 9.•Ca-Alg-AD beads can be separated from water without any chemical or energy input.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>37952825</pmid><doi>10.1016/j.chemosphere.2023.140649</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2359-0627</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-6535 |
ispartof | Chemosphere (Oxford), 2024-02, Vol.349, p.140649-140649, Article 140649 |
issn | 0045-6535 1879-1298 |
language | eng |
recordid | cdi_proquest_miscellaneous_2889589989 |
source | ScienceDirect Freedom Collection |
title | Aluminium dross waste utilization for phosphate removal and recovery from aqueous environment: Operational feasibility development |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A23%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aluminium%20dross%20waste%20utilization%20for%20phosphate%20removal%20and%20recovery%20from%20aqueous%20environment:%20Operational%20feasibility%20development&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Mittal,%20Yamini&rft.date=2024-02&rft.volume=349&rft.spage=140649&rft.epage=140649&rft.pages=140649-140649&rft.artnum=140649&rft.issn=0045-6535&rft.eissn=1879-1298&rft_id=info:doi/10.1016/j.chemosphere.2023.140649&rft_dat=%3Cproquest_cross%3E2889589989%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-cbcd78b84748ee006efa9455f50fb7b08c11f6f4e3bc15328540d7d114a682db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2889589989&rft_id=info:pmid/37952825&rfr_iscdi=true |