Loading…

Topical delivery of seriniquinone for treatment of skin cancer and fungal infections is enabled by a liquid crystalline lamellar phase

Seriniquinone (SQ) was initially described by our group as an antimelanoma drug candidate and now also as an antifungal drug candidate. Despite its promising in vitro effects, SQ translation has been hindered by poor water-solubility. In this paper, we described the challenging nanoformulation proce...

Full description

Saved in:
Bibliographic Details
Published in:European journal of pharmaceutical sciences 2024-01, Vol.192, p.106635-106635, Article 106635
Main Authors: Miguel, Rodrigo dos A., Hirata, Amanda S., Salata, Giovanna C., Apolinário, Alexsandra C., Barroso, Vinicius M., Ishida, Kelly, La Clair, James J., Fenical, William, Martins, Tereza S., Costa-Lotufo, Leticia V., Lopes, Luciana B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Seriniquinone (SQ) was initially described by our group as an antimelanoma drug candidate and now also as an antifungal drug candidate. Despite its promising in vitro effects, SQ translation has been hindered by poor water-solubility. In this paper, we described the challenging nanoformulation process of SQ, which culminated in the selection of a phosphatidylcholine-based lamellar phase (PLP1). Liposomes and nanostructured lipid carriers were also evaluated but failed to encapsulate the compound. SQ-loaded PLP1 (PLP1-SQ) was characterized for the presence of sedimented or non-dissolved SQ, rheological and thermal behavior, and irritation potential with hen's egg test on the chorioallantoic membrane (HET-CAM). PLP1 influence on transepidermal water loss (TEWL) and skin penetration of SQ was assessed in a porcine ear skin model, while biological activity was evaluated against melanoma cell lines (SK-MEL-28 and SK-MEL-147) and C. albicans SC5314. Despite the presence of few particles of non-dissolved SQ (observed under the microscope 2 days after formulation obtainment), PLP1 tripled SQ retention in viable skin layers compared to SQ solution at 12 h. This effect did not seem to relate to formulation-induced changes on the barrier function, as no increases in TEWL were observed. No sign of vascular toxicity in the HET-CAM model was observed after cutaneous treatment with PLP1. SQ activity was maintained on melanoma cells after 48 h-treatment (IC50 values of 0.59–0.98 µM) whereas the minimum inhibitory concentration (MIC) against C. albicans after 24 h-treatment was 32-fold higher. These results suggest that a safe formulation for SQ topical administration was developed, enabling further in vivo studies. [Display omitted]
ISSN:0928-0987
1879-0720
DOI:10.1016/j.ejps.2023.106635