Loading…
Countable nondeterminism and random assignment
Four semantics for a small programming language involving unbounded (but countable) nondeterminism are provided. These comprise an operational semantics, two state transformation semantics based on the Egli-Milner and Smyth orders, respectively, and a weakest precondition semantics. Their equivalenc...
Saved in:
Published in: | Journal of the ACM 1986-10, Vol.33 (4), p.724-767 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c355t-ade63cece0043365768da875cdb3757c2356c8766df2d7fbea44fddb1ae3ede3 |
---|---|
cites | cdi_FETCH-LOGICAL-c355t-ade63cece0043365768da875cdb3757c2356c8766df2d7fbea44fddb1ae3ede3 |
container_end_page | 767 |
container_issue | 4 |
container_start_page | 724 |
container_title | Journal of the ACM |
container_volume | 33 |
creator | APT, K. R PLOTKIN, G. D |
description | Four semantics for a small programming language involving unbounded (but countable) nondeterminism are provided. These comprise an operational semantics, two state transformation semantics based on the Egli-Milner and Smyth orders, respectively, and a weakest precondition semantics. Their equivalence is proved. A Hoare-like proof system for total correctness is also introduced and its soundness and completeness in an appropriate sense are shown. Finally, the recursion theoretic complexity of the notions introduced is studied. Admission of countable nondeterminism results in a lack of continuity of various semantic functions, and this is shown to be necessary for any semantics satisfying appropriate conditions. In proofs of total correctness, one resorts to the use of (countable) ordinals, and it is shown that all recursive ordinals are needed. |
doi_str_mv | 10.1145/6490.6494 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28897010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808054063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-ade63cece0043365768da875cdb3757c2356c8766df2d7fbea44fddb1ae3ede3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFYP_oMeRPSQOJv97FGKX1Dw0oO3sNmdSCTZ1J304L93S4tHL-_MwDPvMC9j1xxKzqV60HIJZRZ5wmZcKVMYoT5O2QwAZKEk5-fsgugrj1CBmbFyNe7i5JoeF3GMASdMQxc7GhYuhkXKMuaWqPuMA8bpkp21rie8OtY52zw_bVavxfr95W31uC68UGoqXEAtPHrMV4XQymgbnDXKh0YYZXwllPbWaB3aKpi2QSdlG0LDHQoMKObs9mC7TeP3Dmmqh4489r2LOO6orqxdGuCQwbt_QW7BgpKgRUbvD6hPI1HCtt6mbnDpp-ZQ77Or99ntRWb25mjryLu-zTn4jv4WbCWW-SXxC_-fbX0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808054063</pqid></control><display><type>article</type><title>Countable nondeterminism and random assignment</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>APT, K. R ; PLOTKIN, G. D</creator><creatorcontrib>APT, K. R ; PLOTKIN, G. D</creatorcontrib><description>Four semantics for a small programming language involving unbounded (but countable) nondeterminism are provided. These comprise an operational semantics, two state transformation semantics based on the Egli-Milner and Smyth orders, respectively, and a weakest precondition semantics. Their equivalence is proved. A Hoare-like proof system for total correctness is also introduced and its soundness and completeness in an appropriate sense are shown. Finally, the recursion theoretic complexity of the notions introduced is studied. Admission of countable nondeterminism results in a lack of continuity of various semantic functions, and this is shown to be necessary for any semantics satisfying appropriate conditions. In proofs of total correctness, one resorts to the use of (countable) ordinals, and it is shown that all recursive ordinals are needed.</description><identifier>ISSN: 0004-5411</identifier><identifier>EISSN: 1557-735X</identifier><identifier>DOI: 10.1145/6490.6494</identifier><identifier>CODEN: JACOAH</identifier><language>eng</language><publisher>New York, NY: Association for Computing Machinery</publisher><subject>Applied sciences ; Completeness ; Computer science; control theory; systems ; Continuity ; Equivalence ; Exact sciences and technology ; Programming languages ; Recursion ; Recursive ; Semantics ; Software ; Transformations</subject><ispartof>Journal of the ACM, 1986-10, Vol.33 (4), p.724-767</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-ade63cece0043365768da875cdb3757c2356c8766df2d7fbea44fddb1ae3ede3</citedby><cites>FETCH-LOGICAL-c355t-ade63cece0043365768da875cdb3757c2356c8766df2d7fbea44fddb1ae3ede3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8239768$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>APT, K. R</creatorcontrib><creatorcontrib>PLOTKIN, G. D</creatorcontrib><title>Countable nondeterminism and random assignment</title><title>Journal of the ACM</title><description>Four semantics for a small programming language involving unbounded (but countable) nondeterminism are provided. These comprise an operational semantics, two state transformation semantics based on the Egli-Milner and Smyth orders, respectively, and a weakest precondition semantics. Their equivalence is proved. A Hoare-like proof system for total correctness is also introduced and its soundness and completeness in an appropriate sense are shown. Finally, the recursion theoretic complexity of the notions introduced is studied. Admission of countable nondeterminism results in a lack of continuity of various semantic functions, and this is shown to be necessary for any semantics satisfying appropriate conditions. In proofs of total correctness, one resorts to the use of (countable) ordinals, and it is shown that all recursive ordinals are needed.</description><subject>Applied sciences</subject><subject>Completeness</subject><subject>Computer science; control theory; systems</subject><subject>Continuity</subject><subject>Equivalence</subject><subject>Exact sciences and technology</subject><subject>Programming languages</subject><subject>Recursion</subject><subject>Recursive</subject><subject>Semantics</subject><subject>Software</subject><subject>Transformations</subject><issn>0004-5411</issn><issn>1557-735X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFYP_oMeRPSQOJv97FGKX1Dw0oO3sNmdSCTZ1J304L93S4tHL-_MwDPvMC9j1xxKzqV60HIJZRZ5wmZcKVMYoT5O2QwAZKEk5-fsgugrj1CBmbFyNe7i5JoeF3GMASdMQxc7GhYuhkXKMuaWqPuMA8bpkp21rie8OtY52zw_bVavxfr95W31uC68UGoqXEAtPHrMV4XQymgbnDXKh0YYZXwllPbWaB3aKpi2QSdlG0LDHQoMKObs9mC7TeP3Dmmqh4489r2LOO6orqxdGuCQwbt_QW7BgpKgRUbvD6hPI1HCtt6mbnDpp-ZQ77Or99ntRWb25mjryLu-zTn4jv4WbCWW-SXxC_-fbX0</recordid><startdate>19861001</startdate><enddate>19861001</enddate><creator>APT, K. R</creator><creator>PLOTKIN, G. D</creator><general>Association for Computing Machinery</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19861001</creationdate><title>Countable nondeterminism and random assignment</title><author>APT, K. R ; PLOTKIN, G. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-ade63cece0043365768da875cdb3757c2356c8766df2d7fbea44fddb1ae3ede3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Applied sciences</topic><topic>Completeness</topic><topic>Computer science; control theory; systems</topic><topic>Continuity</topic><topic>Equivalence</topic><topic>Exact sciences and technology</topic><topic>Programming languages</topic><topic>Recursion</topic><topic>Recursive</topic><topic>Semantics</topic><topic>Software</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>APT, K. R</creatorcontrib><creatorcontrib>PLOTKIN, G. D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of the ACM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>APT, K. R</au><au>PLOTKIN, G. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Countable nondeterminism and random assignment</atitle><jtitle>Journal of the ACM</jtitle><date>1986-10-01</date><risdate>1986</risdate><volume>33</volume><issue>4</issue><spage>724</spage><epage>767</epage><pages>724-767</pages><issn>0004-5411</issn><eissn>1557-735X</eissn><coden>JACOAH</coden><abstract>Four semantics for a small programming language involving unbounded (but countable) nondeterminism are provided. These comprise an operational semantics, two state transformation semantics based on the Egli-Milner and Smyth orders, respectively, and a weakest precondition semantics. Their equivalence is proved. A Hoare-like proof system for total correctness is also introduced and its soundness and completeness in an appropriate sense are shown. Finally, the recursion theoretic complexity of the notions introduced is studied. Admission of countable nondeterminism results in a lack of continuity of various semantic functions, and this is shown to be necessary for any semantics satisfying appropriate conditions. In proofs of total correctness, one resorts to the use of (countable) ordinals, and it is shown that all recursive ordinals are needed.</abstract><cop>New York, NY</cop><pub>Association for Computing Machinery</pub><doi>10.1145/6490.6494</doi><tpages>44</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-5411 |
ispartof | Journal of the ACM, 1986-10, Vol.33 (4), p.724-767 |
issn | 0004-5411 1557-735X |
language | eng |
recordid | cdi_proquest_miscellaneous_28897010 |
source | Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
subjects | Applied sciences Completeness Computer science control theory systems Continuity Equivalence Exact sciences and technology Programming languages Recursion Recursive Semantics Software Transformations |
title | Countable nondeterminism and random assignment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A13%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Countable%20nondeterminism%20and%20random%20assignment&rft.jtitle=Journal%20of%20the%20ACM&rft.au=APT,%20K.%20R&rft.date=1986-10-01&rft.volume=33&rft.issue=4&rft.spage=724&rft.epage=767&rft.pages=724-767&rft.issn=0004-5411&rft.eissn=1557-735X&rft.coden=JACOAH&rft_id=info:doi/10.1145/6490.6494&rft_dat=%3Cproquest_cross%3E1808054063%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-ade63cece0043365768da875cdb3757c2356c8766df2d7fbea44fddb1ae3ede3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1808054063&rft_id=info:pmid/&rfr_iscdi=true |