Loading…
Nanoconfined Water in Pillared Zeolites Probed by 1H Nuclear Magnetic Resonance
Here, we report the results of our 1H nuclear magnetic resonance study of the dynamics of water molecules confined in zeolites (mordenite and ZSM-5 structures) with hierarchical porosity (micropores in zeolite lamella and mesopores formed by amorphous SiO2 in the inter-lamellar space). 1H nuclear ma...
Saved in:
Published in: | International journal of molecular sciences 2023-11, Vol.24 (21), p.15898 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Here, we report the results of our 1H nuclear magnetic resonance study of the dynamics of water molecules confined in zeolites (mordenite and ZSM-5 structures) with hierarchical porosity (micropores in zeolite lamella and mesopores formed by amorphous SiO2 in the inter-lamellar space). 1H nuclear magnetic resonance (NMR) spectra show that water experiences complex behavior within the temperature range from 173 to 298 K. The temperature dependence of 1H spin-lattice relaxation evidences the presence of three processes with different activation energies: freezing (about 30 kJ/mol), fast rotation (about 10 kJ/mol), and translational motion of water molecules (23.6 and 26.0 kJ/mol for pillared mordenite and ZSM-5, respectively). For translational motion, the activation energy is markedly lower than for water in mesoporous silica or zeolites with similar mesopore size but with disordered secondary porosity. This indicates that the process of water diffusion in zeolites with hierarchical porosity is governed not only by the presence of mesopores, but also by the mutual arrangement of meso- and micropores. The translational motion of water molecules is determined mainly by zeolite micropores. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms242115898 |