Loading…
Discovery of PVD-06 as a Subtype-Selective and Efficient PTPN2 Degrader
Protein tyrosine phosphatase nonreceptor Type 2 (PTPN2) is an attractive target for cancer immunotherapy. PTPN2 and another subtype of PTP1B are highly similar in structure, but their biological functions are distinct. Therefore, subtype-selective targeting of PTPN2 remains a challenge for researche...
Saved in:
Published in: | Journal of medicinal chemistry 2023-11, Vol.66 (22), p.15269-15287 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Protein tyrosine phosphatase nonreceptor Type 2 (PTPN2) is an attractive target for cancer immunotherapy. PTPN2 and another subtype of PTP1B are highly similar in structure, but their biological functions are distinct. Therefore, subtype-selective targeting of PTPN2 remains a challenge for researchers. Herein, the development of small molecular PTPN2 degraders based on a thiadiazolidinone dioxide-naphthalene scaffold and a VHL E3 ligase ligand is described, and the PTPN2/PTP1B subtype-selective degradation is achieved for the first time. The linker structure modifications led to the discovery of the subtype-selective PTPN2 degrader
(PTPN2/PTP1B selective index > 60-fold), which also exhibits excellent proteome-wide degradation selectivity.
induces PTPN2 degradation in a ubiquitination- and proteasome-dependent manner. It efficiently promotes T cell activation and amplifies IFN-γ-mediated B16F10 cell growth inhibition. This study provides a convenient chemical knockdown tool for PTPN2-related research and a paradigm for subtype-selective PTP degradation through nonspecific substrate-mimicking ligands, demonstrating the therapeutic potential of PTPN2 subtype-selective degradation. |
---|---|
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/acs.jmedchem.3c01348 |