Loading…
Orientation Cues-Aware Facial Relationship Representation for Head Pose Estimation via Transformer
Head pose estimation (HPE) is an indispensable upstream task in the fields of human-machine interaction, self-driving, and attention detection. However, practical head pose applications suffer from several challenges, such as severe occlusion, low illumination, and extreme orientations. To address t...
Saved in:
Published in: | IEEE transactions on image processing 2023, Vol.32, p.6289-6302 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-519583dd83a4fc9ab4e0d8f0b79bd2965e76f3ff703de2a16bf9570c30176bc93 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-519583dd83a4fc9ab4e0d8f0b79bd2965e76f3ff703de2a16bf9570c30176bc93 |
container_end_page | 6302 |
container_issue | |
container_start_page | 6289 |
container_title | IEEE transactions on image processing |
container_volume | 32 |
creator | Liu, Hai Zhang, Cheng Deng, Yongjian Liu, Tingting Zhang, Zhaoli Li, You-Fu |
description | Head pose estimation (HPE) is an indispensable upstream task in the fields of human-machine interaction, self-driving, and attention detection. However, practical head pose applications suffer from several challenges, such as severe occlusion, low illumination, and extreme orientations. To address these challenges, we identify three cues from head images, namely, critical minority relationships, neighborhood orientation relationships, and significant facial changes. On the basis of the three cues, two key insights on head poses are revealed: 1) intra-orientation relationship and 2) cross-orientation relationship. To leverage two key insights above, a novel relationship-driven method is proposed based on the Transformer architecture, in which facial and orientation relationships can be learned. Specifically, we design several orientation tokens to explicitly encode basic orientation regions. Besides, a novel token guide multi-loss function is accordingly designed to guide the orientation tokens as they learn the desired regional similarities and relationships. Experimental results on three challenging benchmark HPE datasets show that our proposed TokenHPE achieves state-of-the-art performance. Moreover, qualitative visualizations are provided to verify the effectiveness of the token-learning methodology. |
doi_str_mv | 10.1109/TIP.2023.3331309 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2890364459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10318055</ieee_id><sourcerecordid>2890364459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-519583dd83a4fc9ab4e0d8f0b79bd2965e76f3ff703de2a16bf9570c30176bc93</originalsourceid><addsrcrecordid>eNpdkEFLw0AQhRdRbK3ePXgIePGSOpvJZrPHUlpbKLRIPYdNMospaVJ3U8V_78aKiKeZ4X0zzHuM3XIYcw7qcbvcjCOIcIyIHEGdsSFXMQ8B4ujc9yBkKHmsBuzKuR0AjwVPLtkApUoQIB2yfG0rajrdVW0TTI_kwsmHthTMdVHpOnim-ltyr9XBDwdL7pc2rQ0WpMtg0zoKZq6r9ifhvdLB1urGeWJP9ppdGF07uvmpI_Yyn22ni3C1flpOJ6uwwER2oeBKpFiWKerYFErnMUGZGsilystIJYJkYtAYCVhSpHmSGyUkFAhcJnmhcMQeTncPtn3zTrpsX7mC6lo31B5dFqUKMIlj0aP3_9Bde7SN_66nIpRCcvQUnKjCts5ZMtnBeo_2M-OQ9flnPv-szz_7yd-v3J1WKiL6gyNPQQj8Ap3vf6M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892375713</pqid></control><display><type>article</type><title>Orientation Cues-Aware Facial Relationship Representation for Head Pose Estimation via Transformer</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Hai ; Zhang, Cheng ; Deng, Yongjian ; Liu, Tingting ; Zhang, Zhaoli ; Li, You-Fu</creator><creatorcontrib>Liu, Hai ; Zhang, Cheng ; Deng, Yongjian ; Liu, Tingting ; Zhang, Zhaoli ; Li, You-Fu</creatorcontrib><description>Head pose estimation (HPE) is an indispensable upstream task in the fields of human-machine interaction, self-driving, and attention detection. However, practical head pose applications suffer from several challenges, such as severe occlusion, low illumination, and extreme orientations. To address these challenges, we identify three cues from head images, namely, critical minority relationships, neighborhood orientation relationships, and significant facial changes. On the basis of the three cues, two key insights on head poses are revealed: 1) intra-orientation relationship and 2) cross-orientation relationship. To leverage two key insights above, a novel relationship-driven method is proposed based on the Transformer architecture, in which facial and orientation relationships can be learned. Specifically, we design several orientation tokens to explicitly encode basic orientation regions. Besides, a novel token guide multi-loss function is accordingly designed to guide the orientation tokens as they learn the desired regional similarities and relationships. Experimental results on three challenging benchmark HPE datasets show that our proposed TokenHPE achieves state-of-the-art performance. Moreover, qualitative visualizations are provided to verify the effectiveness of the token-learning methodology.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2023.3331309</identifier><identifier>PMID: 37963008</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>attention mechanism ; Computer architecture ; deep learning ; Head ; Head pose estimation ; Occlusion ; Orientation relationships ; Pose estimation ; relationship perception ; Semantics ; Task analysis ; transformer ; Transformers ; Visualization</subject><ispartof>IEEE transactions on image processing, 2023, Vol.32, p.6289-6302</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-519583dd83a4fc9ab4e0d8f0b79bd2965e76f3ff703de2a16bf9570c30176bc93</citedby><cites>FETCH-LOGICAL-c367t-519583dd83a4fc9ab4e0d8f0b79bd2965e76f3ff703de2a16bf9570c30176bc93</cites><orcidid>0000-0002-9347-5974 ; 0000-0001-6831-5103 ; 0000-0002-5227-1326 ; 0000-0003-3446-9301 ; 0000-0002-0844-0719 ; 0000-0001-6253-3564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10318055$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,27902,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Liu, Hai</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Deng, Yongjian</creatorcontrib><creatorcontrib>Liu, Tingting</creatorcontrib><creatorcontrib>Zhang, Zhaoli</creatorcontrib><creatorcontrib>Li, You-Fu</creatorcontrib><title>Orientation Cues-Aware Facial Relationship Representation for Head Pose Estimation via Transformer</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>Head pose estimation (HPE) is an indispensable upstream task in the fields of human-machine interaction, self-driving, and attention detection. However, practical head pose applications suffer from several challenges, such as severe occlusion, low illumination, and extreme orientations. To address these challenges, we identify three cues from head images, namely, critical minority relationships, neighborhood orientation relationships, and significant facial changes. On the basis of the three cues, two key insights on head poses are revealed: 1) intra-orientation relationship and 2) cross-orientation relationship. To leverage two key insights above, a novel relationship-driven method is proposed based on the Transformer architecture, in which facial and orientation relationships can be learned. Specifically, we design several orientation tokens to explicitly encode basic orientation regions. Besides, a novel token guide multi-loss function is accordingly designed to guide the orientation tokens as they learn the desired regional similarities and relationships. Experimental results on three challenging benchmark HPE datasets show that our proposed TokenHPE achieves state-of-the-art performance. Moreover, qualitative visualizations are provided to verify the effectiveness of the token-learning methodology.</description><subject>attention mechanism</subject><subject>Computer architecture</subject><subject>deep learning</subject><subject>Head</subject><subject>Head pose estimation</subject><subject>Occlusion</subject><subject>Orientation relationships</subject><subject>Pose estimation</subject><subject>relationship perception</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>transformer</subject><subject>Transformers</subject><subject>Visualization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpdkEFLw0AQhRdRbK3ePXgIePGSOpvJZrPHUlpbKLRIPYdNMospaVJ3U8V_78aKiKeZ4X0zzHuM3XIYcw7qcbvcjCOIcIyIHEGdsSFXMQ8B4ujc9yBkKHmsBuzKuR0AjwVPLtkApUoQIB2yfG0rajrdVW0TTI_kwsmHthTMdVHpOnim-ltyr9XBDwdL7pc2rQ0WpMtg0zoKZq6r9ifhvdLB1urGeWJP9ppdGF07uvmpI_Yyn22ni3C1flpOJ6uwwER2oeBKpFiWKerYFErnMUGZGsilystIJYJkYtAYCVhSpHmSGyUkFAhcJnmhcMQeTncPtn3zTrpsX7mC6lo31B5dFqUKMIlj0aP3_9Bde7SN_66nIpRCcvQUnKjCts5ZMtnBeo_2M-OQ9flnPv-szz_7yd-v3J1WKiL6gyNPQQj8Ap3vf6M</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Liu, Hai</creator><creator>Zhang, Cheng</creator><creator>Deng, Yongjian</creator><creator>Liu, Tingting</creator><creator>Zhang, Zhaoli</creator><creator>Li, You-Fu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9347-5974</orcidid><orcidid>https://orcid.org/0000-0001-6831-5103</orcidid><orcidid>https://orcid.org/0000-0002-5227-1326</orcidid><orcidid>https://orcid.org/0000-0003-3446-9301</orcidid><orcidid>https://orcid.org/0000-0002-0844-0719</orcidid><orcidid>https://orcid.org/0000-0001-6253-3564</orcidid></search><sort><creationdate>2023</creationdate><title>Orientation Cues-Aware Facial Relationship Representation for Head Pose Estimation via Transformer</title><author>Liu, Hai ; Zhang, Cheng ; Deng, Yongjian ; Liu, Tingting ; Zhang, Zhaoli ; Li, You-Fu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-519583dd83a4fc9ab4e0d8f0b79bd2965e76f3ff703de2a16bf9570c30176bc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>attention mechanism</topic><topic>Computer architecture</topic><topic>deep learning</topic><topic>Head</topic><topic>Head pose estimation</topic><topic>Occlusion</topic><topic>Orientation relationships</topic><topic>Pose estimation</topic><topic>relationship perception</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>transformer</topic><topic>Transformers</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hai</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Deng, Yongjian</creatorcontrib><creatorcontrib>Liu, Tingting</creatorcontrib><creatorcontrib>Zhang, Zhaoli</creatorcontrib><creatorcontrib>Li, You-Fu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Hai</au><au>Zhang, Cheng</au><au>Deng, Yongjian</au><au>Liu, Tingting</au><au>Zhang, Zhaoli</au><au>Li, You-Fu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orientation Cues-Aware Facial Relationship Representation for Head Pose Estimation via Transformer</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2023</date><risdate>2023</risdate><volume>32</volume><spage>6289</spage><epage>6302</epage><pages>6289-6302</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Head pose estimation (HPE) is an indispensable upstream task in the fields of human-machine interaction, self-driving, and attention detection. However, practical head pose applications suffer from several challenges, such as severe occlusion, low illumination, and extreme orientations. To address these challenges, we identify three cues from head images, namely, critical minority relationships, neighborhood orientation relationships, and significant facial changes. On the basis of the three cues, two key insights on head poses are revealed: 1) intra-orientation relationship and 2) cross-orientation relationship. To leverage two key insights above, a novel relationship-driven method is proposed based on the Transformer architecture, in which facial and orientation relationships can be learned. Specifically, we design several orientation tokens to explicitly encode basic orientation regions. Besides, a novel token guide multi-loss function is accordingly designed to guide the orientation tokens as they learn the desired regional similarities and relationships. Experimental results on three challenging benchmark HPE datasets show that our proposed TokenHPE achieves state-of-the-art performance. Moreover, qualitative visualizations are provided to verify the effectiveness of the token-learning methodology.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>37963008</pmid><doi>10.1109/TIP.2023.3331309</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9347-5974</orcidid><orcidid>https://orcid.org/0000-0001-6831-5103</orcidid><orcidid>https://orcid.org/0000-0002-5227-1326</orcidid><orcidid>https://orcid.org/0000-0003-3446-9301</orcidid><orcidid>https://orcid.org/0000-0002-0844-0719</orcidid><orcidid>https://orcid.org/0000-0001-6253-3564</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2023, Vol.32, p.6289-6302 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_miscellaneous_2890364459 |
source | IEEE Electronic Library (IEL) Journals |
subjects | attention mechanism Computer architecture deep learning Head Head pose estimation Occlusion Orientation relationships Pose estimation relationship perception Semantics Task analysis transformer Transformers Visualization |
title | Orientation Cues-Aware Facial Relationship Representation for Head Pose Estimation via Transformer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orientation%20Cues-Aware%20Facial%20Relationship%20Representation%20for%20Head%20Pose%20Estimation%20via%20Transformer&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Liu,%20Hai&rft.date=2023&rft.volume=32&rft.spage=6289&rft.epage=6302&rft.pages=6289-6302&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2023.3331309&rft_dat=%3Cproquest_cross%3E2890364459%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-519583dd83a4fc9ab4e0d8f0b79bd2965e76f3ff703de2a16bf9570c30176bc93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2892375713&rft_id=info:pmid/37963008&rft_ieee_id=10318055&rfr_iscdi=true |