Loading…

Orientation Cues-Aware Facial Relationship Representation for Head Pose Estimation via Transformer

Head pose estimation (HPE) is an indispensable upstream task in the fields of human-machine interaction, self-driving, and attention detection. However, practical head pose applications suffer from several challenges, such as severe occlusion, low illumination, and extreme orientations. To address t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2023, Vol.32, p.6289-6302
Main Authors: Liu, Hai, Zhang, Cheng, Deng, Yongjian, Liu, Tingting, Zhang, Zhaoli, Li, You-Fu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-519583dd83a4fc9ab4e0d8f0b79bd2965e76f3ff703de2a16bf9570c30176bc93
cites cdi_FETCH-LOGICAL-c367t-519583dd83a4fc9ab4e0d8f0b79bd2965e76f3ff703de2a16bf9570c30176bc93
container_end_page 6302
container_issue
container_start_page 6289
container_title IEEE transactions on image processing
container_volume 32
creator Liu, Hai
Zhang, Cheng
Deng, Yongjian
Liu, Tingting
Zhang, Zhaoli
Li, You-Fu
description Head pose estimation (HPE) is an indispensable upstream task in the fields of human-machine interaction, self-driving, and attention detection. However, practical head pose applications suffer from several challenges, such as severe occlusion, low illumination, and extreme orientations. To address these challenges, we identify three cues from head images, namely, critical minority relationships, neighborhood orientation relationships, and significant facial changes. On the basis of the three cues, two key insights on head poses are revealed: 1) intra-orientation relationship and 2) cross-orientation relationship. To leverage two key insights above, a novel relationship-driven method is proposed based on the Transformer architecture, in which facial and orientation relationships can be learned. Specifically, we design several orientation tokens to explicitly encode basic orientation regions. Besides, a novel token guide multi-loss function is accordingly designed to guide the orientation tokens as they learn the desired regional similarities and relationships. Experimental results on three challenging benchmark HPE datasets show that our proposed TokenHPE achieves state-of-the-art performance. Moreover, qualitative visualizations are provided to verify the effectiveness of the token-learning methodology.
doi_str_mv 10.1109/TIP.2023.3331309
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2890364459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10318055</ieee_id><sourcerecordid>2890364459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-519583dd83a4fc9ab4e0d8f0b79bd2965e76f3ff703de2a16bf9570c30176bc93</originalsourceid><addsrcrecordid>eNpdkEFLw0AQhRdRbK3ePXgIePGSOpvJZrPHUlpbKLRIPYdNMospaVJ3U8V_78aKiKeZ4X0zzHuM3XIYcw7qcbvcjCOIcIyIHEGdsSFXMQ8B4ujc9yBkKHmsBuzKuR0AjwVPLtkApUoQIB2yfG0rajrdVW0TTI_kwsmHthTMdVHpOnim-ltyr9XBDwdL7pc2rQ0WpMtg0zoKZq6r9ifhvdLB1urGeWJP9ppdGF07uvmpI_Yyn22ni3C1flpOJ6uwwER2oeBKpFiWKerYFErnMUGZGsilystIJYJkYtAYCVhSpHmSGyUkFAhcJnmhcMQeTncPtn3zTrpsX7mC6lo31B5dFqUKMIlj0aP3_9Bde7SN_66nIpRCcvQUnKjCts5ZMtnBeo_2M-OQ9flnPv-szz_7yd-v3J1WKiL6gyNPQQj8Ap3vf6M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892375713</pqid></control><display><type>article</type><title>Orientation Cues-Aware Facial Relationship Representation for Head Pose Estimation via Transformer</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Hai ; Zhang, Cheng ; Deng, Yongjian ; Liu, Tingting ; Zhang, Zhaoli ; Li, You-Fu</creator><creatorcontrib>Liu, Hai ; Zhang, Cheng ; Deng, Yongjian ; Liu, Tingting ; Zhang, Zhaoli ; Li, You-Fu</creatorcontrib><description>Head pose estimation (HPE) is an indispensable upstream task in the fields of human-machine interaction, self-driving, and attention detection. However, practical head pose applications suffer from several challenges, such as severe occlusion, low illumination, and extreme orientations. To address these challenges, we identify three cues from head images, namely, critical minority relationships, neighborhood orientation relationships, and significant facial changes. On the basis of the three cues, two key insights on head poses are revealed: 1) intra-orientation relationship and 2) cross-orientation relationship. To leverage two key insights above, a novel relationship-driven method is proposed based on the Transformer architecture, in which facial and orientation relationships can be learned. Specifically, we design several orientation tokens to explicitly encode basic orientation regions. Besides, a novel token guide multi-loss function is accordingly designed to guide the orientation tokens as they learn the desired regional similarities and relationships. Experimental results on three challenging benchmark HPE datasets show that our proposed TokenHPE achieves state-of-the-art performance. Moreover, qualitative visualizations are provided to verify the effectiveness of the token-learning methodology.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2023.3331309</identifier><identifier>PMID: 37963008</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>attention mechanism ; Computer architecture ; deep learning ; Head ; Head pose estimation ; Occlusion ; Orientation relationships ; Pose estimation ; relationship perception ; Semantics ; Task analysis ; transformer ; Transformers ; Visualization</subject><ispartof>IEEE transactions on image processing, 2023, Vol.32, p.6289-6302</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-519583dd83a4fc9ab4e0d8f0b79bd2965e76f3ff703de2a16bf9570c30176bc93</citedby><cites>FETCH-LOGICAL-c367t-519583dd83a4fc9ab4e0d8f0b79bd2965e76f3ff703de2a16bf9570c30176bc93</cites><orcidid>0000-0002-9347-5974 ; 0000-0001-6831-5103 ; 0000-0002-5227-1326 ; 0000-0003-3446-9301 ; 0000-0002-0844-0719 ; 0000-0001-6253-3564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10318055$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4009,27902,27903,27904,54774</link.rule.ids></links><search><creatorcontrib>Liu, Hai</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Deng, Yongjian</creatorcontrib><creatorcontrib>Liu, Tingting</creatorcontrib><creatorcontrib>Zhang, Zhaoli</creatorcontrib><creatorcontrib>Li, You-Fu</creatorcontrib><title>Orientation Cues-Aware Facial Relationship Representation for Head Pose Estimation via Transformer</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>Head pose estimation (HPE) is an indispensable upstream task in the fields of human-machine interaction, self-driving, and attention detection. However, practical head pose applications suffer from several challenges, such as severe occlusion, low illumination, and extreme orientations. To address these challenges, we identify three cues from head images, namely, critical minority relationships, neighborhood orientation relationships, and significant facial changes. On the basis of the three cues, two key insights on head poses are revealed: 1) intra-orientation relationship and 2) cross-orientation relationship. To leverage two key insights above, a novel relationship-driven method is proposed based on the Transformer architecture, in which facial and orientation relationships can be learned. Specifically, we design several orientation tokens to explicitly encode basic orientation regions. Besides, a novel token guide multi-loss function is accordingly designed to guide the orientation tokens as they learn the desired regional similarities and relationships. Experimental results on three challenging benchmark HPE datasets show that our proposed TokenHPE achieves state-of-the-art performance. Moreover, qualitative visualizations are provided to verify the effectiveness of the token-learning methodology.</description><subject>attention mechanism</subject><subject>Computer architecture</subject><subject>deep learning</subject><subject>Head</subject><subject>Head pose estimation</subject><subject>Occlusion</subject><subject>Orientation relationships</subject><subject>Pose estimation</subject><subject>relationship perception</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>transformer</subject><subject>Transformers</subject><subject>Visualization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpdkEFLw0AQhRdRbK3ePXgIePGSOpvJZrPHUlpbKLRIPYdNMospaVJ3U8V_78aKiKeZ4X0zzHuM3XIYcw7qcbvcjCOIcIyIHEGdsSFXMQ8B4ujc9yBkKHmsBuzKuR0AjwVPLtkApUoQIB2yfG0rajrdVW0TTI_kwsmHthTMdVHpOnim-ltyr9XBDwdL7pc2rQ0WpMtg0zoKZq6r9ifhvdLB1urGeWJP9ppdGF07uvmpI_Yyn22ni3C1flpOJ6uwwER2oeBKpFiWKerYFErnMUGZGsilystIJYJkYtAYCVhSpHmSGyUkFAhcJnmhcMQeTncPtn3zTrpsX7mC6lo31B5dFqUKMIlj0aP3_9Bde7SN_66nIpRCcvQUnKjCts5ZMtnBeo_2M-OQ9flnPv-szz_7yd-v3J1WKiL6gyNPQQj8Ap3vf6M</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Liu, Hai</creator><creator>Zhang, Cheng</creator><creator>Deng, Yongjian</creator><creator>Liu, Tingting</creator><creator>Zhang, Zhaoli</creator><creator>Li, You-Fu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9347-5974</orcidid><orcidid>https://orcid.org/0000-0001-6831-5103</orcidid><orcidid>https://orcid.org/0000-0002-5227-1326</orcidid><orcidid>https://orcid.org/0000-0003-3446-9301</orcidid><orcidid>https://orcid.org/0000-0002-0844-0719</orcidid><orcidid>https://orcid.org/0000-0001-6253-3564</orcidid></search><sort><creationdate>2023</creationdate><title>Orientation Cues-Aware Facial Relationship Representation for Head Pose Estimation via Transformer</title><author>Liu, Hai ; Zhang, Cheng ; Deng, Yongjian ; Liu, Tingting ; Zhang, Zhaoli ; Li, You-Fu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-519583dd83a4fc9ab4e0d8f0b79bd2965e76f3ff703de2a16bf9570c30176bc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>attention mechanism</topic><topic>Computer architecture</topic><topic>deep learning</topic><topic>Head</topic><topic>Head pose estimation</topic><topic>Occlusion</topic><topic>Orientation relationships</topic><topic>Pose estimation</topic><topic>relationship perception</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>transformer</topic><topic>Transformers</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Hai</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Deng, Yongjian</creatorcontrib><creatorcontrib>Liu, Tingting</creatorcontrib><creatorcontrib>Zhang, Zhaoli</creatorcontrib><creatorcontrib>Li, You-Fu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Hai</au><au>Zhang, Cheng</au><au>Deng, Yongjian</au><au>Liu, Tingting</au><au>Zhang, Zhaoli</au><au>Li, You-Fu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orientation Cues-Aware Facial Relationship Representation for Head Pose Estimation via Transformer</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2023</date><risdate>2023</risdate><volume>32</volume><spage>6289</spage><epage>6302</epage><pages>6289-6302</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Head pose estimation (HPE) is an indispensable upstream task in the fields of human-machine interaction, self-driving, and attention detection. However, practical head pose applications suffer from several challenges, such as severe occlusion, low illumination, and extreme orientations. To address these challenges, we identify three cues from head images, namely, critical minority relationships, neighborhood orientation relationships, and significant facial changes. On the basis of the three cues, two key insights on head poses are revealed: 1) intra-orientation relationship and 2) cross-orientation relationship. To leverage two key insights above, a novel relationship-driven method is proposed based on the Transformer architecture, in which facial and orientation relationships can be learned. Specifically, we design several orientation tokens to explicitly encode basic orientation regions. Besides, a novel token guide multi-loss function is accordingly designed to guide the orientation tokens as they learn the desired regional similarities and relationships. Experimental results on three challenging benchmark HPE datasets show that our proposed TokenHPE achieves state-of-the-art performance. Moreover, qualitative visualizations are provided to verify the effectiveness of the token-learning methodology.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>37963008</pmid><doi>10.1109/TIP.2023.3331309</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9347-5974</orcidid><orcidid>https://orcid.org/0000-0001-6831-5103</orcidid><orcidid>https://orcid.org/0000-0002-5227-1326</orcidid><orcidid>https://orcid.org/0000-0003-3446-9301</orcidid><orcidid>https://orcid.org/0000-0002-0844-0719</orcidid><orcidid>https://orcid.org/0000-0001-6253-3564</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2023, Vol.32, p.6289-6302
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_miscellaneous_2890364459
source IEEE Electronic Library (IEL) Journals
subjects attention mechanism
Computer architecture
deep learning
Head
Head pose estimation
Occlusion
Orientation relationships
Pose estimation
relationship perception
Semantics
Task analysis
transformer
Transformers
Visualization
title Orientation Cues-Aware Facial Relationship Representation for Head Pose Estimation via Transformer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orientation%20Cues-Aware%20Facial%20Relationship%20Representation%20for%20Head%20Pose%20Estimation%20via%20Transformer&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Liu,%20Hai&rft.date=2023&rft.volume=32&rft.spage=6289&rft.epage=6302&rft.pages=6289-6302&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2023.3331309&rft_dat=%3Cproquest_cross%3E2890364459%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-519583dd83a4fc9ab4e0d8f0b79bd2965e76f3ff703de2a16bf9570c30176bc93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2892375713&rft_id=info:pmid/37963008&rft_ieee_id=10318055&rfr_iscdi=true