Loading…

Li adsorption and diffusion on the surfaces of molybdenum dichalcogenides MoX2 (X = S, Se, Te) monolayers for lithium-ion batteries application: a DFT study

Context We study some of the most high performance electrode materials for lithium-ion batteries. These comprise molybdenum dichalcogenide MoX 2 (molybdenum disulfide MoS 2 , molybdenum diselenide MoSe 2 , molybdenum ditelluride MoTe 2 ). The stability is studied by calculating cohesive energy and f...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular modeling 2023-12, Vol.29 (12), p.378-378, Article 378
Main Authors: Bounbaâ, Malak, Khuili, Mohamed, Fazouan, Nejma, Atmani, El Houssine, Allaoui, Isam, Houmad, Mohamed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-f30f552f6406dfee061e58baf369a8aa9134b441999358c8bd6a9b613f58f0cb3
cites cdi_FETCH-LOGICAL-c352t-f30f552f6406dfee061e58baf369a8aa9134b441999358c8bd6a9b613f58f0cb3
container_end_page 378
container_issue 12
container_start_page 378
container_title Journal of molecular modeling
container_volume 29
creator Bounbaâ, Malak
Khuili, Mohamed
Fazouan, Nejma
Atmani, El Houssine
Allaoui, Isam
Houmad, Mohamed
description Context We study some of the most high performance electrode materials for lithium-ion batteries. These comprise molybdenum dichalcogenide MoX 2 (molybdenum disulfide MoS 2 , molybdenum diselenide MoSe 2 , molybdenum ditelluride MoTe 2 ). The stability is studied by calculating cohesive energy and formation energy. Structural, electronic, and electrical properties are well defined, and these structures show a direct gap. Lithium adsorption at different sites, theoretical storage capacity, and lithium diffusion path are determined. Our study findings suggest that the adsorption of Li on the preferred site on the surface of the MoX 2 monolayer maintains its semiconductor behavior. Comparing the activation energy barrier of these structures with other monolayers such as graphene or silicene, we found that MoX 2 shows low lithium diffusion energy and good storage capacity, which indicates that the MoX 2 is well suited as an anode material for lithium-ion batteries. Our research can offer new ideas for experimental and theoretical design and new anode materials for lithium-ion batteries (LIB). Methods The studies were performed with Quantum ESPRESSO package based on density functional theory (DFT), plane waves, and pseudopotentials (PWSCF) to calculate the physical properties of MoX 2 (X = S, Se, Te), lithium adsorption, and diffusion on their surfaces and the storage capacity of these structures. The BoltzTraP code is used to calculate thermoelectric properties.
doi_str_mv 10.1007/s00894-023-05787-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2890755658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2890755658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-f30f552f6406dfee061e58baf369a8aa9134b441999358c8bd6a9b613f58f0cb3</originalsourceid><addsrcrecordid>eNp9kcFq3DAQhkVoocs2L5CTIJcUomYkWV6p0ENJmzawJYdsITchy1JWwbZcyT74Xfqw0WYLhRwKA2Kk7_9n0I_QGYWPFGBzlQGkqggwTkBs5IYsJ2gFqpJElLs3aEVrCoSpCt6h05yfAIAyUQvGVujPNmDT5pjGKcQBm6HFbfB-zoeu1LR3OM_JG-syjh73sVua1g1zXzi7N52Nj24IbXn9GR8YvnjAn_H9Jb53l3jnPhR-iJ1ZXMrYx4S7MO3D3JODe2OmyaVQlGYcu2DNYYNP2OCvNzucp7ld3qO33nTZnf491-jXzbfd9Q-yvft-e_1lSywXbCKegxeC-bqCuvXOQU2dkI3xvFZGGqMor5qqokopLqSVTVsb1dSUeyE92Iav0cXRd0zx9-zypPuQres6M7g4Z82kgo0oPyYLev4KfYpzGsp2LxRXUpYpa8SOlE0x5-S8HlPoTVo0BX3ITB8z0yUf_ZKZXoqIH0W5wMOjS_-s_6N6Br-Mmm0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890398899</pqid></control><display><type>article</type><title>Li adsorption and diffusion on the surfaces of molybdenum dichalcogenides MoX2 (X = S, Se, Te) monolayers for lithium-ion batteries application: a DFT study</title><source>Springer Nature</source><creator>Bounbaâ, Malak ; Khuili, Mohamed ; Fazouan, Nejma ; Atmani, El Houssine ; Allaoui, Isam ; Houmad, Mohamed</creator><creatorcontrib>Bounbaâ, Malak ; Khuili, Mohamed ; Fazouan, Nejma ; Atmani, El Houssine ; Allaoui, Isam ; Houmad, Mohamed</creatorcontrib><description>Context We study some of the most high performance electrode materials for lithium-ion batteries. These comprise molybdenum dichalcogenide MoX 2 (molybdenum disulfide MoS 2 , molybdenum diselenide MoSe 2 , molybdenum ditelluride MoTe 2 ). The stability is studied by calculating cohesive energy and formation energy. Structural, electronic, and electrical properties are well defined, and these structures show a direct gap. Lithium adsorption at different sites, theoretical storage capacity, and lithium diffusion path are determined. Our study findings suggest that the adsorption of Li on the preferred site on the surface of the MoX 2 monolayer maintains its semiconductor behavior. Comparing the activation energy barrier of these structures with other monolayers such as graphene or silicene, we found that MoX 2 shows low lithium diffusion energy and good storage capacity, which indicates that the MoX 2 is well suited as an anode material for lithium-ion batteries. Our research can offer new ideas for experimental and theoretical design and new anode materials for lithium-ion batteries (LIB). Methods The studies were performed with Quantum ESPRESSO package based on density functional theory (DFT), plane waves, and pseudopotentials (PWSCF) to calculate the physical properties of MoX 2 (X = S, Se, Te), lithium adsorption, and diffusion on their surfaces and the storage capacity of these structures. The BoltzTraP code is used to calculate thermoelectric properties.</description><identifier>ISSN: 1610-2940</identifier><identifier>EISSN: 0948-5023</identifier><identifier>DOI: 10.1007/s00894-023-05787-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adsorption ; Anodes ; Chalcogenides ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Computer Appl. in Life Sciences ; Computer Applications in Chemistry ; Density functional theory ; Electrical properties ; Electrode materials ; Energy storage ; Free energy ; Graphene ; Heat of formation ; Lithium ; Lithium-ion batteries ; Mathematical analysis ; Molecular Medicine ; Molybdenum ; Molybdenum compounds ; Molybdenum disulfide ; Monolayers ; Original Paper ; Physical properties ; Plane waves ; Pseudopotentials ; Rechargeable batteries ; Selenium ; Storage capacity ; Surface chemistry ; Tellurides ; Tellurium ; Theoretical and Computational Chemistry ; Two dimensional materials</subject><ispartof>Journal of molecular modeling, 2023-12, Vol.29 (12), p.378-378, Article 378</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-f30f552f6406dfee061e58baf369a8aa9134b441999358c8bd6a9b613f58f0cb3</citedby><cites>FETCH-LOGICAL-c352t-f30f552f6406dfee061e58baf369a8aa9134b441999358c8bd6a9b613f58f0cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bounbaâ, Malak</creatorcontrib><creatorcontrib>Khuili, Mohamed</creatorcontrib><creatorcontrib>Fazouan, Nejma</creatorcontrib><creatorcontrib>Atmani, El Houssine</creatorcontrib><creatorcontrib>Allaoui, Isam</creatorcontrib><creatorcontrib>Houmad, Mohamed</creatorcontrib><title>Li adsorption and diffusion on the surfaces of molybdenum dichalcogenides MoX2 (X = S, Se, Te) monolayers for lithium-ion batteries application: a DFT study</title><title>Journal of molecular modeling</title><addtitle>J Mol Model</addtitle><description>Context We study some of the most high performance electrode materials for lithium-ion batteries. These comprise molybdenum dichalcogenide MoX 2 (molybdenum disulfide MoS 2 , molybdenum diselenide MoSe 2 , molybdenum ditelluride MoTe 2 ). The stability is studied by calculating cohesive energy and formation energy. Structural, electronic, and electrical properties are well defined, and these structures show a direct gap. Lithium adsorption at different sites, theoretical storage capacity, and lithium diffusion path are determined. Our study findings suggest that the adsorption of Li on the preferred site on the surface of the MoX 2 monolayer maintains its semiconductor behavior. Comparing the activation energy barrier of these structures with other monolayers such as graphene or silicene, we found that MoX 2 shows low lithium diffusion energy and good storage capacity, which indicates that the MoX 2 is well suited as an anode material for lithium-ion batteries. Our research can offer new ideas for experimental and theoretical design and new anode materials for lithium-ion batteries (LIB). Methods The studies were performed with Quantum ESPRESSO package based on density functional theory (DFT), plane waves, and pseudopotentials (PWSCF) to calculate the physical properties of MoX 2 (X = S, Se, Te), lithium adsorption, and diffusion on their surfaces and the storage capacity of these structures. The BoltzTraP code is used to calculate thermoelectric properties.</description><subject>Adsorption</subject><subject>Anodes</subject><subject>Chalcogenides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Applications in Chemistry</subject><subject>Density functional theory</subject><subject>Electrical properties</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>Free energy</subject><subject>Graphene</subject><subject>Heat of formation</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Mathematical analysis</subject><subject>Molecular Medicine</subject><subject>Molybdenum</subject><subject>Molybdenum compounds</subject><subject>Molybdenum disulfide</subject><subject>Monolayers</subject><subject>Original Paper</subject><subject>Physical properties</subject><subject>Plane waves</subject><subject>Pseudopotentials</subject><subject>Rechargeable batteries</subject><subject>Selenium</subject><subject>Storage capacity</subject><subject>Surface chemistry</subject><subject>Tellurides</subject><subject>Tellurium</subject><subject>Theoretical and Computational Chemistry</subject><subject>Two dimensional materials</subject><issn>1610-2940</issn><issn>0948-5023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kcFq3DAQhkVoocs2L5CTIJcUomYkWV6p0ENJmzawJYdsITchy1JWwbZcyT74Xfqw0WYLhRwKA2Kk7_9n0I_QGYWPFGBzlQGkqggwTkBs5IYsJ2gFqpJElLs3aEVrCoSpCt6h05yfAIAyUQvGVujPNmDT5pjGKcQBm6HFbfB-zoeu1LR3OM_JG-syjh73sVua1g1zXzi7N52Nj24IbXn9GR8YvnjAn_H9Jb53l3jnPhR-iJ1ZXMrYx4S7MO3D3JODe2OmyaVQlGYcu2DNYYNP2OCvNzucp7ld3qO33nTZnf491-jXzbfd9Q-yvft-e_1lSywXbCKegxeC-bqCuvXOQU2dkI3xvFZGGqMor5qqokopLqSVTVsb1dSUeyE92Iav0cXRd0zx9-zypPuQres6M7g4Z82kgo0oPyYLev4KfYpzGsp2LxRXUpYpa8SOlE0x5-S8HlPoTVo0BX3ITB8z0yUf_ZKZXoqIH0W5wMOjS_-s_6N6Br-Mmm0</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Bounbaâ, Malak</creator><creator>Khuili, Mohamed</creator><creator>Fazouan, Nejma</creator><creator>Atmani, El Houssine</creator><creator>Allaoui, Isam</creator><creator>Houmad, Mohamed</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20231201</creationdate><title>Li adsorption and diffusion on the surfaces of molybdenum dichalcogenides MoX2 (X = S, Se, Te) monolayers for lithium-ion batteries application: a DFT study</title><author>Bounbaâ, Malak ; Khuili, Mohamed ; Fazouan, Nejma ; Atmani, El Houssine ; Allaoui, Isam ; Houmad, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-f30f552f6406dfee061e58baf369a8aa9134b441999358c8bd6a9b613f58f0cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Anodes</topic><topic>Chalcogenides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Applications in Chemistry</topic><topic>Density functional theory</topic><topic>Electrical properties</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>Free energy</topic><topic>Graphene</topic><topic>Heat of formation</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Mathematical analysis</topic><topic>Molecular Medicine</topic><topic>Molybdenum</topic><topic>Molybdenum compounds</topic><topic>Molybdenum disulfide</topic><topic>Monolayers</topic><topic>Original Paper</topic><topic>Physical properties</topic><topic>Plane waves</topic><topic>Pseudopotentials</topic><topic>Rechargeable batteries</topic><topic>Selenium</topic><topic>Storage capacity</topic><topic>Surface chemistry</topic><topic>Tellurides</topic><topic>Tellurium</topic><topic>Theoretical and Computational Chemistry</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bounbaâ, Malak</creatorcontrib><creatorcontrib>Khuili, Mohamed</creatorcontrib><creatorcontrib>Fazouan, Nejma</creatorcontrib><creatorcontrib>Atmani, El Houssine</creatorcontrib><creatorcontrib>Allaoui, Isam</creatorcontrib><creatorcontrib>Houmad, Mohamed</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bounbaâ, Malak</au><au>Khuili, Mohamed</au><au>Fazouan, Nejma</au><au>Atmani, El Houssine</au><au>Allaoui, Isam</au><au>Houmad, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Li adsorption and diffusion on the surfaces of molybdenum dichalcogenides MoX2 (X = S, Se, Te) monolayers for lithium-ion batteries application: a DFT study</atitle><jtitle>Journal of molecular modeling</jtitle><stitle>J Mol Model</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>29</volume><issue>12</issue><spage>378</spage><epage>378</epage><pages>378-378</pages><artnum>378</artnum><issn>1610-2940</issn><eissn>0948-5023</eissn><abstract>Context We study some of the most high performance electrode materials for lithium-ion batteries. These comprise molybdenum dichalcogenide MoX 2 (molybdenum disulfide MoS 2 , molybdenum diselenide MoSe 2 , molybdenum ditelluride MoTe 2 ). The stability is studied by calculating cohesive energy and formation energy. Structural, electronic, and electrical properties are well defined, and these structures show a direct gap. Lithium adsorption at different sites, theoretical storage capacity, and lithium diffusion path are determined. Our study findings suggest that the adsorption of Li on the preferred site on the surface of the MoX 2 monolayer maintains its semiconductor behavior. Comparing the activation energy barrier of these structures with other monolayers such as graphene or silicene, we found that MoX 2 shows low lithium diffusion energy and good storage capacity, which indicates that the MoX 2 is well suited as an anode material for lithium-ion batteries. Our research can offer new ideas for experimental and theoretical design and new anode materials for lithium-ion batteries (LIB). Methods The studies were performed with Quantum ESPRESSO package based on density functional theory (DFT), plane waves, and pseudopotentials (PWSCF) to calculate the physical properties of MoX 2 (X = S, Se, Te), lithium adsorption, and diffusion on their surfaces and the storage capacity of these structures. The BoltzTraP code is used to calculate thermoelectric properties.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00894-023-05787-y</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1610-2940
ispartof Journal of molecular modeling, 2023-12, Vol.29 (12), p.378-378, Article 378
issn 1610-2940
0948-5023
language eng
recordid cdi_proquest_miscellaneous_2890755658
source Springer Nature
subjects Adsorption
Anodes
Chalcogenides
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Computer Appl. in Life Sciences
Computer Applications in Chemistry
Density functional theory
Electrical properties
Electrode materials
Energy storage
Free energy
Graphene
Heat of formation
Lithium
Lithium-ion batteries
Mathematical analysis
Molecular Medicine
Molybdenum
Molybdenum compounds
Molybdenum disulfide
Monolayers
Original Paper
Physical properties
Plane waves
Pseudopotentials
Rechargeable batteries
Selenium
Storage capacity
Surface chemistry
Tellurides
Tellurium
Theoretical and Computational Chemistry
Two dimensional materials
title Li adsorption and diffusion on the surfaces of molybdenum dichalcogenides MoX2 (X = S, Se, Te) monolayers for lithium-ion batteries application: a DFT study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A13%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Li%20adsorption%20and%20diffusion%20on%20the%20surfaces%20of%20molybdenum%20dichalcogenides%20MoX2%20(X%20=%20S,%20Se,%20Te)%20monolayers%20for%20lithium-ion%20batteries%20application:%20a%20DFT%20study&rft.jtitle=Journal%20of%20molecular%20modeling&rft.au=Bounba%C3%A2,%20Malak&rft.date=2023-12-01&rft.volume=29&rft.issue=12&rft.spage=378&rft.epage=378&rft.pages=378-378&rft.artnum=378&rft.issn=1610-2940&rft.eissn=0948-5023&rft_id=info:doi/10.1007/s00894-023-05787-y&rft_dat=%3Cproquest_cross%3E2890755658%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-f30f552f6406dfee061e58baf369a8aa9134b441999358c8bd6a9b613f58f0cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2890398899&rft_id=info:pmid/&rfr_iscdi=true