Loading…
Li adsorption and diffusion on the surfaces of molybdenum dichalcogenides MoX2 (X = S, Se, Te) monolayers for lithium-ion batteries application: a DFT study
Context We study some of the most high performance electrode materials for lithium-ion batteries. These comprise molybdenum dichalcogenide MoX 2 (molybdenum disulfide MoS 2 , molybdenum diselenide MoSe 2 , molybdenum ditelluride MoTe 2 ). The stability is studied by calculating cohesive energy and f...
Saved in:
Published in: | Journal of molecular modeling 2023-12, Vol.29 (12), p.378-378, Article 378 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c352t-f30f552f6406dfee061e58baf369a8aa9134b441999358c8bd6a9b613f58f0cb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c352t-f30f552f6406dfee061e58baf369a8aa9134b441999358c8bd6a9b613f58f0cb3 |
container_end_page | 378 |
container_issue | 12 |
container_start_page | 378 |
container_title | Journal of molecular modeling |
container_volume | 29 |
creator | Bounbaâ, Malak Khuili, Mohamed Fazouan, Nejma Atmani, El Houssine Allaoui, Isam Houmad, Mohamed |
description | Context
We study some of the most high performance electrode materials for lithium-ion batteries. These comprise molybdenum dichalcogenide MoX
2
(molybdenum disulfide MoS
2
, molybdenum diselenide MoSe
2
, molybdenum ditelluride MoTe
2
). The stability is studied by calculating cohesive energy and formation energy. Structural, electronic, and electrical properties are well defined, and these structures show a direct gap. Lithium adsorption at different sites, theoretical storage capacity, and lithium diffusion path are determined. Our study findings suggest that the adsorption of Li on the preferred site on the surface of the MoX
2
monolayer maintains its semiconductor behavior. Comparing the activation energy barrier of these structures with other monolayers such as graphene or silicene, we found that MoX
2
shows low lithium diffusion energy and good storage capacity, which indicates that the MoX
2
is well suited as an anode material for lithium-ion batteries. Our research can offer new ideas for experimental and theoretical design and new anode materials for lithium-ion batteries (LIB).
Methods
The studies were performed with Quantum ESPRESSO package based on density functional theory (DFT), plane waves, and pseudopotentials (PWSCF) to calculate the physical properties of MoX
2
(X = S, Se, Te), lithium adsorption, and diffusion on their surfaces and the storage capacity of these structures. The BoltzTraP code is used to calculate thermoelectric properties. |
doi_str_mv | 10.1007/s00894-023-05787-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2890755658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2890755658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-f30f552f6406dfee061e58baf369a8aa9134b441999358c8bd6a9b613f58f0cb3</originalsourceid><addsrcrecordid>eNp9kcFq3DAQhkVoocs2L5CTIJcUomYkWV6p0ENJmzawJYdsITchy1JWwbZcyT74Xfqw0WYLhRwKA2Kk7_9n0I_QGYWPFGBzlQGkqggwTkBs5IYsJ2gFqpJElLs3aEVrCoSpCt6h05yfAIAyUQvGVujPNmDT5pjGKcQBm6HFbfB-zoeu1LR3OM_JG-syjh73sVua1g1zXzi7N52Nj24IbXn9GR8YvnjAn_H9Jb53l3jnPhR-iJ1ZXMrYx4S7MO3D3JODe2OmyaVQlGYcu2DNYYNP2OCvNzucp7ld3qO33nTZnf491-jXzbfd9Q-yvft-e_1lSywXbCKegxeC-bqCuvXOQU2dkI3xvFZGGqMor5qqokopLqSVTVsb1dSUeyE92Iav0cXRd0zx9-zypPuQres6M7g4Z82kgo0oPyYLev4KfYpzGsp2LxRXUpYpa8SOlE0x5-S8HlPoTVo0BX3ITB8z0yUf_ZKZXoqIH0W5wMOjS_-s_6N6Br-Mmm0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890398899</pqid></control><display><type>article</type><title>Li adsorption and diffusion on the surfaces of molybdenum dichalcogenides MoX2 (X = S, Se, Te) monolayers for lithium-ion batteries application: a DFT study</title><source>Springer Nature</source><creator>Bounbaâ, Malak ; Khuili, Mohamed ; Fazouan, Nejma ; Atmani, El Houssine ; Allaoui, Isam ; Houmad, Mohamed</creator><creatorcontrib>Bounbaâ, Malak ; Khuili, Mohamed ; Fazouan, Nejma ; Atmani, El Houssine ; Allaoui, Isam ; Houmad, Mohamed</creatorcontrib><description>Context
We study some of the most high performance electrode materials for lithium-ion batteries. These comprise molybdenum dichalcogenide MoX
2
(molybdenum disulfide MoS
2
, molybdenum diselenide MoSe
2
, molybdenum ditelluride MoTe
2
). The stability is studied by calculating cohesive energy and formation energy. Structural, electronic, and electrical properties are well defined, and these structures show a direct gap. Lithium adsorption at different sites, theoretical storage capacity, and lithium diffusion path are determined. Our study findings suggest that the adsorption of Li on the preferred site on the surface of the MoX
2
monolayer maintains its semiconductor behavior. Comparing the activation energy barrier of these structures with other monolayers such as graphene or silicene, we found that MoX
2
shows low lithium diffusion energy and good storage capacity, which indicates that the MoX
2
is well suited as an anode material for lithium-ion batteries. Our research can offer new ideas for experimental and theoretical design and new anode materials for lithium-ion batteries (LIB).
Methods
The studies were performed with Quantum ESPRESSO package based on density functional theory (DFT), plane waves, and pseudopotentials (PWSCF) to calculate the physical properties of MoX
2
(X = S, Se, Te), lithium adsorption, and diffusion on their surfaces and the storage capacity of these structures. The BoltzTraP code is used to calculate thermoelectric properties.</description><identifier>ISSN: 1610-2940</identifier><identifier>EISSN: 0948-5023</identifier><identifier>DOI: 10.1007/s00894-023-05787-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adsorption ; Anodes ; Chalcogenides ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Computer Appl. in Life Sciences ; Computer Applications in Chemistry ; Density functional theory ; Electrical properties ; Electrode materials ; Energy storage ; Free energy ; Graphene ; Heat of formation ; Lithium ; Lithium-ion batteries ; Mathematical analysis ; Molecular Medicine ; Molybdenum ; Molybdenum compounds ; Molybdenum disulfide ; Monolayers ; Original Paper ; Physical properties ; Plane waves ; Pseudopotentials ; Rechargeable batteries ; Selenium ; Storage capacity ; Surface chemistry ; Tellurides ; Tellurium ; Theoretical and Computational Chemistry ; Two dimensional materials</subject><ispartof>Journal of molecular modeling, 2023-12, Vol.29 (12), p.378-378, Article 378</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-f30f552f6406dfee061e58baf369a8aa9134b441999358c8bd6a9b613f58f0cb3</citedby><cites>FETCH-LOGICAL-c352t-f30f552f6406dfee061e58baf369a8aa9134b441999358c8bd6a9b613f58f0cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bounbaâ, Malak</creatorcontrib><creatorcontrib>Khuili, Mohamed</creatorcontrib><creatorcontrib>Fazouan, Nejma</creatorcontrib><creatorcontrib>Atmani, El Houssine</creatorcontrib><creatorcontrib>Allaoui, Isam</creatorcontrib><creatorcontrib>Houmad, Mohamed</creatorcontrib><title>Li adsorption and diffusion on the surfaces of molybdenum dichalcogenides MoX2 (X = S, Se, Te) monolayers for lithium-ion batteries application: a DFT study</title><title>Journal of molecular modeling</title><addtitle>J Mol Model</addtitle><description>Context
We study some of the most high performance electrode materials for lithium-ion batteries. These comprise molybdenum dichalcogenide MoX
2
(molybdenum disulfide MoS
2
, molybdenum diselenide MoSe
2
, molybdenum ditelluride MoTe
2
). The stability is studied by calculating cohesive energy and formation energy. Structural, electronic, and electrical properties are well defined, and these structures show a direct gap. Lithium adsorption at different sites, theoretical storage capacity, and lithium diffusion path are determined. Our study findings suggest that the adsorption of Li on the preferred site on the surface of the MoX
2
monolayer maintains its semiconductor behavior. Comparing the activation energy barrier of these structures with other monolayers such as graphene or silicene, we found that MoX
2
shows low lithium diffusion energy and good storage capacity, which indicates that the MoX
2
is well suited as an anode material for lithium-ion batteries. Our research can offer new ideas for experimental and theoretical design and new anode materials for lithium-ion batteries (LIB).
Methods
The studies were performed with Quantum ESPRESSO package based on density functional theory (DFT), plane waves, and pseudopotentials (PWSCF) to calculate the physical properties of MoX
2
(X = S, Se, Te), lithium adsorption, and diffusion on their surfaces and the storage capacity of these structures. The BoltzTraP code is used to calculate thermoelectric properties.</description><subject>Adsorption</subject><subject>Anodes</subject><subject>Chalcogenides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Applications in Chemistry</subject><subject>Density functional theory</subject><subject>Electrical properties</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>Free energy</subject><subject>Graphene</subject><subject>Heat of formation</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Mathematical analysis</subject><subject>Molecular Medicine</subject><subject>Molybdenum</subject><subject>Molybdenum compounds</subject><subject>Molybdenum disulfide</subject><subject>Monolayers</subject><subject>Original Paper</subject><subject>Physical properties</subject><subject>Plane waves</subject><subject>Pseudopotentials</subject><subject>Rechargeable batteries</subject><subject>Selenium</subject><subject>Storage capacity</subject><subject>Surface chemistry</subject><subject>Tellurides</subject><subject>Tellurium</subject><subject>Theoretical and Computational Chemistry</subject><subject>Two dimensional materials</subject><issn>1610-2940</issn><issn>0948-5023</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kcFq3DAQhkVoocs2L5CTIJcUomYkWV6p0ENJmzawJYdsITchy1JWwbZcyT74Xfqw0WYLhRwKA2Kk7_9n0I_QGYWPFGBzlQGkqggwTkBs5IYsJ2gFqpJElLs3aEVrCoSpCt6h05yfAIAyUQvGVujPNmDT5pjGKcQBm6HFbfB-zoeu1LR3OM_JG-syjh73sVua1g1zXzi7N52Nj24IbXn9GR8YvnjAn_H9Jb53l3jnPhR-iJ1ZXMrYx4S7MO3D3JODe2OmyaVQlGYcu2DNYYNP2OCvNzucp7ld3qO33nTZnf491-jXzbfd9Q-yvft-e_1lSywXbCKegxeC-bqCuvXOQU2dkI3xvFZGGqMor5qqokopLqSVTVsb1dSUeyE92Iav0cXRd0zx9-zypPuQres6M7g4Z82kgo0oPyYLev4KfYpzGsp2LxRXUpYpa8SOlE0x5-S8HlPoTVo0BX3ITB8z0yUf_ZKZXoqIH0W5wMOjS_-s_6N6Br-Mmm0</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Bounbaâ, Malak</creator><creator>Khuili, Mohamed</creator><creator>Fazouan, Nejma</creator><creator>Atmani, El Houssine</creator><creator>Allaoui, Isam</creator><creator>Houmad, Mohamed</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20231201</creationdate><title>Li adsorption and diffusion on the surfaces of molybdenum dichalcogenides MoX2 (X = S, Se, Te) monolayers for lithium-ion batteries application: a DFT study</title><author>Bounbaâ, Malak ; Khuili, Mohamed ; Fazouan, Nejma ; Atmani, El Houssine ; Allaoui, Isam ; Houmad, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-f30f552f6406dfee061e58baf369a8aa9134b441999358c8bd6a9b613f58f0cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adsorption</topic><topic>Anodes</topic><topic>Chalcogenides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Applications in Chemistry</topic><topic>Density functional theory</topic><topic>Electrical properties</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>Free energy</topic><topic>Graphene</topic><topic>Heat of formation</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Mathematical analysis</topic><topic>Molecular Medicine</topic><topic>Molybdenum</topic><topic>Molybdenum compounds</topic><topic>Molybdenum disulfide</topic><topic>Monolayers</topic><topic>Original Paper</topic><topic>Physical properties</topic><topic>Plane waves</topic><topic>Pseudopotentials</topic><topic>Rechargeable batteries</topic><topic>Selenium</topic><topic>Storage capacity</topic><topic>Surface chemistry</topic><topic>Tellurides</topic><topic>Tellurium</topic><topic>Theoretical and Computational Chemistry</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bounbaâ, Malak</creatorcontrib><creatorcontrib>Khuili, Mohamed</creatorcontrib><creatorcontrib>Fazouan, Nejma</creatorcontrib><creatorcontrib>Atmani, El Houssine</creatorcontrib><creatorcontrib>Allaoui, Isam</creatorcontrib><creatorcontrib>Houmad, Mohamed</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bounbaâ, Malak</au><au>Khuili, Mohamed</au><au>Fazouan, Nejma</au><au>Atmani, El Houssine</au><au>Allaoui, Isam</au><au>Houmad, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Li adsorption and diffusion on the surfaces of molybdenum dichalcogenides MoX2 (X = S, Se, Te) monolayers for lithium-ion batteries application: a DFT study</atitle><jtitle>Journal of molecular modeling</jtitle><stitle>J Mol Model</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>29</volume><issue>12</issue><spage>378</spage><epage>378</epage><pages>378-378</pages><artnum>378</artnum><issn>1610-2940</issn><eissn>0948-5023</eissn><abstract>Context
We study some of the most high performance electrode materials for lithium-ion batteries. These comprise molybdenum dichalcogenide MoX
2
(molybdenum disulfide MoS
2
, molybdenum diselenide MoSe
2
, molybdenum ditelluride MoTe
2
). The stability is studied by calculating cohesive energy and formation energy. Structural, electronic, and electrical properties are well defined, and these structures show a direct gap. Lithium adsorption at different sites, theoretical storage capacity, and lithium diffusion path are determined. Our study findings suggest that the adsorption of Li on the preferred site on the surface of the MoX
2
monolayer maintains its semiconductor behavior. Comparing the activation energy barrier of these structures with other monolayers such as graphene or silicene, we found that MoX
2
shows low lithium diffusion energy and good storage capacity, which indicates that the MoX
2
is well suited as an anode material for lithium-ion batteries. Our research can offer new ideas for experimental and theoretical design and new anode materials for lithium-ion batteries (LIB).
Methods
The studies were performed with Quantum ESPRESSO package based on density functional theory (DFT), plane waves, and pseudopotentials (PWSCF) to calculate the physical properties of MoX
2
(X = S, Se, Te), lithium adsorption, and diffusion on their surfaces and the storage capacity of these structures. The BoltzTraP code is used to calculate thermoelectric properties.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00894-023-05787-y</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1610-2940 |
ispartof | Journal of molecular modeling, 2023-12, Vol.29 (12), p.378-378, Article 378 |
issn | 1610-2940 0948-5023 |
language | eng |
recordid | cdi_proquest_miscellaneous_2890755658 |
source | Springer Nature |
subjects | Adsorption Anodes Chalcogenides Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Computer Appl. in Life Sciences Computer Applications in Chemistry Density functional theory Electrical properties Electrode materials Energy storage Free energy Graphene Heat of formation Lithium Lithium-ion batteries Mathematical analysis Molecular Medicine Molybdenum Molybdenum compounds Molybdenum disulfide Monolayers Original Paper Physical properties Plane waves Pseudopotentials Rechargeable batteries Selenium Storage capacity Surface chemistry Tellurides Tellurium Theoretical and Computational Chemistry Two dimensional materials |
title | Li adsorption and diffusion on the surfaces of molybdenum dichalcogenides MoX2 (X = S, Se, Te) monolayers for lithium-ion batteries application: a DFT study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A13%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Li%20adsorption%20and%20diffusion%20on%20the%20surfaces%20of%20molybdenum%20dichalcogenides%20MoX2%20(X%20=%20S,%20Se,%20Te)%20monolayers%20for%20lithium-ion%20batteries%20application:%20a%20DFT%20study&rft.jtitle=Journal%20of%20molecular%20modeling&rft.au=Bounba%C3%A2,%20Malak&rft.date=2023-12-01&rft.volume=29&rft.issue=12&rft.spage=378&rft.epage=378&rft.pages=378-378&rft.artnum=378&rft.issn=1610-2940&rft.eissn=0948-5023&rft_id=info:doi/10.1007/s00894-023-05787-y&rft_dat=%3Cproquest_cross%3E2890755658%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-f30f552f6406dfee061e58baf369a8aa9134b441999358c8bd6a9b613f58f0cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2890398899&rft_id=info:pmid/&rfr_iscdi=true |