Loading…

Automatic Prediction of Paediatric Cardiac Output From Echocardiograms Using Deep Learning Models

Cardiac output (CO) perturbations are common and cause significant morbidity and mortality. Accurate CO assessment is crucial for guiding treatment in anaesthesia and critical care, but measurement is difficult, even for experts. Artificial intelligence methods show promise as alternatives for accur...

Full description

Saved in:
Bibliographic Details
Published in:CJC pediatric and congenital heart disease 2023-02, Vol.2 (1), p.12-19
Main Authors: Ufkes, Steven, Zuercher, Mael, Erdman, Lauren, Slorach, Cameron, Mertens, Luc, Taylor, Katherine L.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cardiac output (CO) perturbations are common and cause significant morbidity and mortality. Accurate CO assessment is crucial for guiding treatment in anaesthesia and critical care, but measurement is difficult, even for experts. Artificial intelligence methods show promise as alternatives for accurate, rapid CO assessment. We reviewed paediatric echocardiograms with normal CO and a dilated cardiomyopathy patient group with reduced CO. Experts measured the left ventricular outflow tract diameter, velocity time integral, CO, and cardiac index (CI). EchoNet-Dynamic is a deep learning model for estimation of ejection fraction in adults. We modified this model to predict the left ventricular outflow tract diameter and retrained it on paediatric data. We developed a novel deep learning approach for velocity time integral estimation. The combined models enable automatic prediction of CO. We evaluated the models against expert measurements. Primary outcomes were root-mean-squared error, mean absolute error, mean average percentage error, and coefficient of determination (R2). In a test set unused during training, CI was estimated with the root-mean-squared error of 0.389 L/min/m2, mean absolute error of 0.321 L/min/m2, mean average percentage error of 10.8%, and R2 of 0.755. The Bland-Altman analysis showed that the models estimated CI with a bias of +0.14 L/min/m2 and 95% limits of agreement -0.58 to 0.86 L/min/m2. Our model estimated CO with strong correlation to ground truth and a bias of 0.17 L/min, better than many CO measurements in paediatrics. Model pretraining enabled accurate estimation despite a small dataset. Potential uses include supporting clinicians in real-time bedside calculation of CO, identification of low-CO states, and treatment responses. Les perturbations du débit cardiaque sont fréquentes et associées à des taux élevés de morbidité et de mortalité. Une évaluation juste du débit cardiaque est essentielle pour orienter le choix du traitement anesthésique et des soins critiques. Or, il est difficile de mesurer le débit cardiaque, même pour les experts. Les méthodes fondées sur l’intelligence artificielle semblent toutefois prometteuses pour évaluer le débit cardiaque avec exactitude et rapidité. Nous avons analysé des échocardiogrammes pédiatriques chez des personnes dont le débit cardiaque est normal ainsi que chez des patients qui étaient atteints d’une cardiomyopathie dilatée et dont le débit cardiaque était réduit. Des experts ont mesuré
ISSN:2772-8129
2772-8129
DOI:10.1016/j.cjcpc.2022.11.001