Loading…

Andrographolide inhibits the activation of spinal microglia and ameliorates mechanical allodynia

Andrographolide (Andro), a labdane diterpene, possesses anti-inflammatory properties and has been used to treat numerous inflammatory diseases. Novel findings revealed that Andro might be vital in regulating pain. However, the contribution of Andro to chronic inflammatory pain has yet to be determin...

Full description

Saved in:
Bibliographic Details
Published in:Metabolic brain disease 2024-01, Vol.39 (1), p.115-127
Main Authors: Wang, Dan, Zheng, Yongjian, Xie, Junjing, Yu, Wenwen, Lu, Zhongteng, Zhang, Wenping, Hu, Yanling, Fu, Jianyuan, Sheng, Qing, Lv, Zhengbing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Andrographolide (Andro), a labdane diterpene, possesses anti-inflammatory properties and has been used to treat numerous inflammatory diseases. Novel findings revealed that Andro might be vital in regulating pain. However, the contribution of Andro to chronic inflammatory pain has yet to be determined, and its underlying mechanism of action remains unknown. In this study, we observed that Andro attenuated mechanical allodynia in inflammatory pain mice induced by injecting complete Freund’s adjuvant (CFA) into the right hind paws. This analgesic effect of Andro is mainly dependent on its inhibition of microglial overactivation and the release of proinflammatory cytokines (TNF and IL-1β) in lumbar spinal cords of inflammatory pain model mice. More importantly, our data in vivo and in vitro revealed a negative role for Andro in regulating the TLR4/NF-κB signaling pathway, which might contribute to the inhibition of spinal microglial activation and proinflammatory cytokines production, and the improvement of paw withdrawal thresholds in a mouse model of chronic inflammatory pain evoked by CFA. We further found the potential interaction of Andro with TLR4/myeloid differentiation factor 2 heterodimer using molecular modeling, implying that TLR4 might be a potential target for Andro to exert an analgesic effect. Taken together, our findings demonstrated that the modulation of spinal microglial activation by Andro might be substantially conducive to managing chronic pain triggered by neuroinflammation.
ISSN:1573-7365
0885-7490
1573-7365
DOI:10.1007/s11011-023-01325-0