Loading…

Comprehensive distribution and species of selenium in Se-enriched Pichia kudriavzevii 1845

This study is the first to demonstrate the yeast Pichia kudriavzevii can effectively deliver Se and investigate the distribution and species of Se in Se-enriched P. kudriavzevii. Results showed that P. kudriavzevii can accumulate Se and convert 84.883% of absorbed Se into organic forms, of which 78....

Full description

Saved in:
Bibliographic Details
Published in:Food chemistry 2024-04, Vol.438, p.137966-137966, Article 137966
Main Authors: Wang, Huijuan, Yang, Silong, Chen, Yue, Wang, Zhouli, Yuan, Yahong, Yue, Tianli
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study is the first to demonstrate the yeast Pichia kudriavzevii can effectively deliver Se and investigate the distribution and species of Se in Se-enriched P. kudriavzevii. Results showed that P. kudriavzevii can accumulate Se and convert 84.883% of absorbed Se into organic forms, of which 78.338% was incorporated into protein, 1.978% combined with polysaccharides, and 0.456% bound to nucleic acid. Besides, water-soluble, salt-soluble, and alkali-soluble proteins account for 49.398%, 1.867%, and 20.628% of selenoprotein, respectively. The dominant Se species were SeCys2 and MeSeCys. Additionally, Se-enrichment enhanced nutritional value of P. kudriavzevii by increasing the levels of amino acids, iron, and zinc. The activity of key rate-limiting enzyme sephosphate synthetase involved in Se biotransformation was improved after Se enrichment. The extracellular pH results suggest that Se enrichment ability can be further enhanced by elevating pH. These results suggest P. kudriavzevii holds great promise as an effective vehicle for delivering Se.
ISSN:0308-8146
1873-7072
DOI:10.1016/j.foodchem.2023.137966