Loading…
Interaction of a bacterial non-classically secreted RNase HⅠ with a citrus B-Box zinc finger protein delays flowering in Arabidopsis thaliana and suppresses the expression of FLOWERING LOCUS T
Ribonuclease HI (RNase HI) is well conserved across prokaryotes and eukaryotes, and has long been known to localize in the nucleic acid-containing cellular compartments for acting as an R-loop eraser but has never been determined to be a secreted protein. "Candidatus Liberibacter asiaticus"...
Saved in:
Published in: | Microbiological research 2024-01, Vol.278, p.127541-127541, Article 127541 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ribonuclease HI (RNase HI) is well conserved across prokaryotes and eukaryotes, and has long been known to localize in the nucleic acid-containing cellular compartments for acting as an R-loop eraser but has never been determined to be a secreted protein. "Candidatus Liberibacter asiaticus" (CLas) is a fastidious α-proteobacterium that causes Huanglongbing (HLB), a devastating citrus disease often associated with flowering out of season. In this study, using the SecretomeP program coupled with an Escherichia coli-based alkaline phosphatase assay, we demonstrated that the CLas RNase HI (LasRNHⅠ) was a non-classically secreted protein. Further experiments identified that LasRNHⅠ could interact with a citrus B-box zinc finger protein CsBBX28 in the plant nucleolus. The in vitro assays indicated that CsBBX28 dramatically enhanced the R-loop-degrading activity of LasRNHⅠ. Remarkably, co-expression of CsBBX28 and LasRNHⅠ in Arabidopsis thaliana led to a much later flowering time than that of wild-type Arabidopsis, as well as that of the transgenic A. thaliana expressing only CsBBX28 or LasRNHⅠ, and lastingly and significantly repressed transcription of FLOWERING LOCUS T (FT), a floral pathway integrator. Similarly, ectopic expression of LasRNHⅠ in citrus greatly reduced the transcription level of FT. The data together disclosed the extracellular secretion of LasRNHⅠ, and that LasRNHⅠ physically interacted with CsBBX28 and served as a flowering repressor through suppressing the FT expression, suggesting a novel role of RNase HI in the bacteria interacting with the host plants. |
---|---|
ISSN: | 0944-5013 1618-0623 |
DOI: | 10.1016/j.micres.2023.127541 |