Loading…
Green, Safe, and Reliable Synthesis of Bimetallic MOF‐808 Nanozymes With Enhanced Aqueous Stability and Reactivity for Biological Applications
Bimetallic metal‐organic frameworks (MOFs) are promising nanomaterials whose reactivity towards biomolecules remains challenging due to issues related to synthesis, stability, control over metal oxidation state, phase purity, and atomic level characterization. Here, these shortcomings are rationally...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-03, Vol.20 (13), p.e2307236-n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bimetallic metal‐organic frameworks (MOFs) are promising nanomaterials whose reactivity towards biomolecules remains challenging due to issues related to synthesis, stability, control over metal oxidation state, phase purity, and atomic level characterization. Here, these shortcomings are rationally addressed through development of a synthesis of mixed metal Zr/Ce‐MOFs in aqueous environment, overcoming significant hurdles in the development of MOF nanozymes, sufficiently stable on biologically relevant conditions. Specifically, a green and safe synthesis of Zr/Ce‐MOF‐808 is reported in water/acetic acid mixture which affords remarkably water‐stable materials with reliable nanozymatic reactivity, including MOFs with a high Ce content previously reported to be unstable in water. The new materials outperform analogous bimetallic MOF nanozymes, showcasing that rational synthesis modifications could impart outstanding improvements. Further, atomic‐level characterization by X‐ray Absorption Fine Structure (XAFS) and X‐ray Diffraction (XRD) confirmed superior nanozymes arise from differences in the synthetic method, which results in aqueous stable materials, and Ce incorporation, which perturbs the ligand exchange dynamics of the material, and could ultimately be used to fine tune the intrinsic MOF reactivity. Similar rational strategies which leverage metals in a synergistic manner should enable other water‐stable bimetallic MOF nanozymes able to surpass existing ones, laying the path for varied biotechnological applications.
Development of a novel, green, and safe synthesis of bimetallic Zr/Ce‐MOFs (metal‐organic frameworks) for nonenzymatic hydrolysis that outperform other bimetallic MOF nanozymes in biologically relevant conditions. X‐ray absorption fine structure (XAFS) and X‐ray diffraction (XRD) analysis are used to correlate structural changes and reactivity, including a detailed comparison with previous synthesis methods. |
---|---|
ISSN: | 1613-6810 1613-6829 |
DOI: | 10.1002/smll.202307236 |