Loading…
EEGNet-based multi-source domain filter for BCI transfer learning
Deep learning has great potential on decoding EEG in brain-computer interface. While common deep learning algorithms cannot directly train models with data from multiple individuals because of the inter-individual differences in EEG. Collecting enough data for each subject to satisfy the trainin...
Saved in:
Published in: | Medical & biological engineering & computing 2024-03, Vol.62 (3), p.675-686 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: |
Deep learning has great potential on decoding EEG in brain-computer interface. While common deep learning algorithms cannot directly train models with data from multiple individuals because of the inter-individual differences in EEG. Collecting enough data for each subject to satisfy the training of deep learning would result in an increase in training cost. This study proposes a novel transfer learning, EEGNet-based multi-source domain filter for transfer learning (EEGNet-MDFTL), to reduce the amount of training data and improve the performance of BCI. The EEGNet-MDFTL uses bagging ensemble learning to learn domain-invariant features from the multi-source domain and utilizes model loss value to filter the multi-source domain. Compared with baseline methods, the accuracy of the EEGNet-MDFTL reaches 91.96%, higher than two state-of-the-art methods, which demonstrates source domain filter can select similar source domains to improve the accuracy of the model, and remains a high level even when the data amount is reduced to 1/8, proving that ensemble learning learns enough domain invariant features from the multi-source domain to make the model insensitive to data amount. The proposed EEGNet-MDFTL is effective in improving the decoding performance with a small amount of data, which is helpful to save the BCI training cost.
Graphical Abstract |
---|---|
ISSN: | 0140-0118 1741-0444 |
DOI: | 10.1007/s11517-023-02967-z |