Loading…

Location of steel reinforcement in concrete using ground penetrating radar and neural networks

Ground-penetrating radar is becoming increasingly popular for use as a non-destructive assessment method for investigating reinforced concrete structures. The amount of data collected however can be very large and take a significant level of subjective experience to interpret. This study focuses upo...

Full description

Saved in:
Bibliographic Details
Published in:NDT & E international 2005-04, Vol.38 (3), p.203-212
Main Authors: Shaw, M.R., Millard, S.G., Molyneaux, T.C.K., Taylor, M.J., Bungey, J.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c432t-2326ba5b23b4e2cb8aad2f10ace1a85779c805c7d12b309a322ff237152ac1f13
cites cdi_FETCH-LOGICAL-c432t-2326ba5b23b4e2cb8aad2f10ace1a85779c805c7d12b309a322ff237152ac1f13
container_end_page 212
container_issue 3
container_start_page 203
container_title NDT & E international
container_volume 38
creator Shaw, M.R.
Millard, S.G.
Molyneaux, T.C.K.
Taylor, M.J.
Bungey, J.H.
description Ground-penetrating radar is becoming increasingly popular for use as a non-destructive assessment method for investigating reinforced concrete structures. The amount of data collected however can be very large and take a significant level of subjective experience to interpret. This study focuses upon the use of a neural network approach to automate and facilitate the post-processing of ground penetrating radar results. The radar data is reduced to a simplified data set by using an edge detection routine. Signal reflections from reinforcing bars displaying a hyperbolic image format are detected using a multi-layer perceptron (MLP) network with a single hidden layer containing 8 nodes to recognise a simplified hyperbolic shape. Training and testing of the network was carried out making use of an emulsion analogue tank, simulating the properties of concrete, and using real concrete specimens. The results showed that the use of a MLP neural network approach could be quite effective in automating the identification and location of embedded steel reinforcing bars from a radar investigation. Accurate estimation of depth, or cover, requires a reliable knowledge of the dielectric properties of the concrete, and recent work using a specially-developed wideband horn antenna for direct determination of in situ properties is also outlined.
doi_str_mv 10.1016/j.ndteint.2004.06.011
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28921704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0963869504001021</els_id><sourcerecordid>28539638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-2326ba5b23b4e2cb8aad2f10ace1a85779c805c7d12b309a322ff237152ac1f13</originalsourceid><addsrcrecordid>eNqNkU9r3DAUxEVpods0HyGgS3uzqz-2JZ9CCU1SWOilvVY8y09BW6-0keSWfPto2YUek9OD4Tcz8IaQK85azvjwZdeGuaAPpRWMdS0bWsb5G7LhWo0N56p7SzZsHGSjh7F_Tz7kvGOMiU6qDfm9jRaKj4FGR3NBXGiqUS4mi3sMhfpAbQw2YUG6Zh8e6EOKa5jpAQOWVL1VSjBDolDVgGuCpZ7yL6Y_-SN552DJeHm-F-TX7befN_fN9sfd95uv28Z2UpRGSDFM0E9CTh0KO2mAWTjOwCIH3Ss1Ws16q2YuJslGkEI4J6TivQDLHZcX5PMp95Di44q5mL3PFpcFAsY1G6FHwRXrXgFqNnS8fwXYy_pTXcH-BNoUc07ozCH5PaQnw5k57mN25ryPOe5j2GDqPtX36VwA2cLiEgTr83_z0KlR6bFy1ycO6__-ekwmW4_B4uwT2mLm6F9oegZngqoT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28539638</pqid></control><display><type>article</type><title>Location of steel reinforcement in concrete using ground penetrating radar and neural networks</title><source>ScienceDirect Freedom Collection</source><creator>Shaw, M.R. ; Millard, S.G. ; Molyneaux, T.C.K. ; Taylor, M.J. ; Bungey, J.H.</creator><creatorcontrib>Shaw, M.R. ; Millard, S.G. ; Molyneaux, T.C.K. ; Taylor, M.J. ; Bungey, J.H.</creatorcontrib><description>Ground-penetrating radar is becoming increasingly popular for use as a non-destructive assessment method for investigating reinforced concrete structures. The amount of data collected however can be very large and take a significant level of subjective experience to interpret. This study focuses upon the use of a neural network approach to automate and facilitate the post-processing of ground penetrating radar results. The radar data is reduced to a simplified data set by using an edge detection routine. Signal reflections from reinforcing bars displaying a hyperbolic image format are detected using a multi-layer perceptron (MLP) network with a single hidden layer containing 8 nodes to recognise a simplified hyperbolic shape. Training and testing of the network was carried out making use of an emulsion analogue tank, simulating the properties of concrete, and using real concrete specimens. The results showed that the use of a MLP neural network approach could be quite effective in automating the identification and location of embedded steel reinforcing bars from a radar investigation. Accurate estimation of depth, or cover, requires a reliable knowledge of the dielectric properties of the concrete, and recent work using a specially-developed wideband horn antenna for direct determination of in situ properties is also outlined.</description><identifier>ISSN: 0963-8695</identifier><identifier>EISSN: 1879-1174</identifier><identifier>DOI: 10.1016/j.ndteint.2004.06.011</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Buildings. Public works ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Ground penetrating radar ; Materials science ; Materials testing ; Measurements. Technique of testing ; Multi-layer perceptron ; Neural network ; Pattern recognition ; Physics</subject><ispartof>NDT &amp; E international, 2005-04, Vol.38 (3), p.203-212</ispartof><rights>2004 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-2326ba5b23b4e2cb8aad2f10ace1a85779c805c7d12b309a322ff237152ac1f13</citedby><cites>FETCH-LOGICAL-c432t-2326ba5b23b4e2cb8aad2f10ace1a85779c805c7d12b309a322ff237152ac1f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16479789$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaw, M.R.</creatorcontrib><creatorcontrib>Millard, S.G.</creatorcontrib><creatorcontrib>Molyneaux, T.C.K.</creatorcontrib><creatorcontrib>Taylor, M.J.</creatorcontrib><creatorcontrib>Bungey, J.H.</creatorcontrib><title>Location of steel reinforcement in concrete using ground penetrating radar and neural networks</title><title>NDT &amp; E international</title><description>Ground-penetrating radar is becoming increasingly popular for use as a non-destructive assessment method for investigating reinforced concrete structures. The amount of data collected however can be very large and take a significant level of subjective experience to interpret. This study focuses upon the use of a neural network approach to automate and facilitate the post-processing of ground penetrating radar results. The radar data is reduced to a simplified data set by using an edge detection routine. Signal reflections from reinforcing bars displaying a hyperbolic image format are detected using a multi-layer perceptron (MLP) network with a single hidden layer containing 8 nodes to recognise a simplified hyperbolic shape. Training and testing of the network was carried out making use of an emulsion analogue tank, simulating the properties of concrete, and using real concrete specimens. The results showed that the use of a MLP neural network approach could be quite effective in automating the identification and location of embedded steel reinforcing bars from a radar investigation. Accurate estimation of depth, or cover, requires a reliable knowledge of the dielectric properties of the concrete, and recent work using a specially-developed wideband horn antenna for direct determination of in situ properties is also outlined.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Ground penetrating radar</subject><subject>Materials science</subject><subject>Materials testing</subject><subject>Measurements. Technique of testing</subject><subject>Multi-layer perceptron</subject><subject>Neural network</subject><subject>Pattern recognition</subject><subject>Physics</subject><issn>0963-8695</issn><issn>1879-1174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkU9r3DAUxEVpods0HyGgS3uzqz-2JZ9CCU1SWOilvVY8y09BW6-0keSWfPto2YUek9OD4Tcz8IaQK85azvjwZdeGuaAPpRWMdS0bWsb5G7LhWo0N56p7SzZsHGSjh7F_Tz7kvGOMiU6qDfm9jRaKj4FGR3NBXGiqUS4mi3sMhfpAbQw2YUG6Zh8e6EOKa5jpAQOWVL1VSjBDolDVgGuCpZ7yL6Y_-SN552DJeHm-F-TX7befN_fN9sfd95uv28Z2UpRGSDFM0E9CTh0KO2mAWTjOwCIH3Ss1Ws16q2YuJslGkEI4J6TivQDLHZcX5PMp95Di44q5mL3PFpcFAsY1G6FHwRXrXgFqNnS8fwXYy_pTXcH-BNoUc07ozCH5PaQnw5k57mN25ryPOe5j2GDqPtX36VwA2cLiEgTr83_z0KlR6bFy1ycO6__-ekwmW4_B4uwT2mLm6F9oegZngqoT</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Shaw, M.R.</creator><creator>Millard, S.G.</creator><creator>Molyneaux, T.C.K.</creator><creator>Taylor, M.J.</creator><creator>Bungey, J.H.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>20050401</creationdate><title>Location of steel reinforcement in concrete using ground penetrating radar and neural networks</title><author>Shaw, M.R. ; Millard, S.G. ; Molyneaux, T.C.K. ; Taylor, M.J. ; Bungey, J.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-2326ba5b23b4e2cb8aad2f10ace1a85779c805c7d12b309a322ff237152ac1f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Ground penetrating radar</topic><topic>Materials science</topic><topic>Materials testing</topic><topic>Measurements. Technique of testing</topic><topic>Multi-layer perceptron</topic><topic>Neural network</topic><topic>Pattern recognition</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaw, M.R.</creatorcontrib><creatorcontrib>Millard, S.G.</creatorcontrib><creatorcontrib>Molyneaux, T.C.K.</creatorcontrib><creatorcontrib>Taylor, M.J.</creatorcontrib><creatorcontrib>Bungey, J.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>NDT &amp; E international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaw, M.R.</au><au>Millard, S.G.</au><au>Molyneaux, T.C.K.</au><au>Taylor, M.J.</au><au>Bungey, J.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Location of steel reinforcement in concrete using ground penetrating radar and neural networks</atitle><jtitle>NDT &amp; E international</jtitle><date>2005-04-01</date><risdate>2005</risdate><volume>38</volume><issue>3</issue><spage>203</spage><epage>212</epage><pages>203-212</pages><issn>0963-8695</issn><eissn>1879-1174</eissn><abstract>Ground-penetrating radar is becoming increasingly popular for use as a non-destructive assessment method for investigating reinforced concrete structures. The amount of data collected however can be very large and take a significant level of subjective experience to interpret. This study focuses upon the use of a neural network approach to automate and facilitate the post-processing of ground penetrating radar results. The radar data is reduced to a simplified data set by using an edge detection routine. Signal reflections from reinforcing bars displaying a hyperbolic image format are detected using a multi-layer perceptron (MLP) network with a single hidden layer containing 8 nodes to recognise a simplified hyperbolic shape. Training and testing of the network was carried out making use of an emulsion analogue tank, simulating the properties of concrete, and using real concrete specimens. The results showed that the use of a MLP neural network approach could be quite effective in automating the identification and location of embedded steel reinforcing bars from a radar investigation. Accurate estimation of depth, or cover, requires a reliable knowledge of the dielectric properties of the concrete, and recent work using a specially-developed wideband horn antenna for direct determination of in situ properties is also outlined.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ndteint.2004.06.011</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0963-8695
ispartof NDT & E international, 2005-04, Vol.38 (3), p.203-212
issn 0963-8695
1879-1174
language eng
recordid cdi_proquest_miscellaneous_28921704
source ScienceDirect Freedom Collection
subjects Applied sciences
Buildings. Public works
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Ground penetrating radar
Materials science
Materials testing
Measurements. Technique of testing
Multi-layer perceptron
Neural network
Pattern recognition
Physics
title Location of steel reinforcement in concrete using ground penetrating radar and neural networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Location%20of%20steel%20reinforcement%20in%20concrete%20using%20ground%20penetrating%20radar%20and%20neural%20networks&rft.jtitle=NDT%20&%20E%20international&rft.au=Shaw,%20M.R.&rft.date=2005-04-01&rft.volume=38&rft.issue=3&rft.spage=203&rft.epage=212&rft.pages=203-212&rft.issn=0963-8695&rft.eissn=1879-1174&rft_id=info:doi/10.1016/j.ndteint.2004.06.011&rft_dat=%3Cproquest_cross%3E28539638%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c432t-2326ba5b23b4e2cb8aad2f10ace1a85779c805c7d12b309a322ff237152ac1f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28539638&rft_id=info:pmid/&rfr_iscdi=true