Loading…
Location of steel reinforcement in concrete using ground penetrating radar and neural networks
Ground-penetrating radar is becoming increasingly popular for use as a non-destructive assessment method for investigating reinforced concrete structures. The amount of data collected however can be very large and take a significant level of subjective experience to interpret. This study focuses upo...
Saved in:
Published in: | NDT & E international 2005-04, Vol.38 (3), p.203-212 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c432t-2326ba5b23b4e2cb8aad2f10ace1a85779c805c7d12b309a322ff237152ac1f13 |
---|---|
cites | cdi_FETCH-LOGICAL-c432t-2326ba5b23b4e2cb8aad2f10ace1a85779c805c7d12b309a322ff237152ac1f13 |
container_end_page | 212 |
container_issue | 3 |
container_start_page | 203 |
container_title | NDT & E international |
container_volume | 38 |
creator | Shaw, M.R. Millard, S.G. Molyneaux, T.C.K. Taylor, M.J. Bungey, J.H. |
description | Ground-penetrating radar is becoming increasingly popular for use as a non-destructive assessment method for investigating reinforced concrete structures. The amount of data collected however can be very large and take a significant level of subjective experience to interpret. This study focuses upon the use of a neural network approach to automate and facilitate the post-processing of ground penetrating radar results. The radar data is reduced to a simplified data set by using an edge detection routine. Signal reflections from reinforcing bars displaying a hyperbolic image format are detected using a multi-layer perceptron (MLP) network with a single hidden layer containing 8 nodes to recognise a simplified hyperbolic shape. Training and testing of the network was carried out making use of an emulsion analogue tank, simulating the properties of concrete, and using real concrete specimens. The results showed that the use of a MLP neural network approach could be quite effective in automating the identification and location of embedded steel reinforcing bars from a radar investigation. Accurate estimation of depth, or cover, requires a reliable knowledge of the dielectric properties of the concrete, and recent work using a specially-developed wideband horn antenna for direct determination of in situ properties is also outlined. |
doi_str_mv | 10.1016/j.ndteint.2004.06.011 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28921704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0963869504001021</els_id><sourcerecordid>28539638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-2326ba5b23b4e2cb8aad2f10ace1a85779c805c7d12b309a322ff237152ac1f13</originalsourceid><addsrcrecordid>eNqNkU9r3DAUxEVpods0HyGgS3uzqz-2JZ9CCU1SWOilvVY8y09BW6-0keSWfPto2YUek9OD4Tcz8IaQK85azvjwZdeGuaAPpRWMdS0bWsb5G7LhWo0N56p7SzZsHGSjh7F_Tz7kvGOMiU6qDfm9jRaKj4FGR3NBXGiqUS4mi3sMhfpAbQw2YUG6Zh8e6EOKa5jpAQOWVL1VSjBDolDVgGuCpZ7yL6Y_-SN552DJeHm-F-TX7befN_fN9sfd95uv28Z2UpRGSDFM0E9CTh0KO2mAWTjOwCIH3Ss1Ws16q2YuJslGkEI4J6TivQDLHZcX5PMp95Di44q5mL3PFpcFAsY1G6FHwRXrXgFqNnS8fwXYy_pTXcH-BNoUc07ozCH5PaQnw5k57mN25ryPOe5j2GDqPtX36VwA2cLiEgTr83_z0KlR6bFy1ycO6__-ekwmW4_B4uwT2mLm6F9oegZngqoT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28539638</pqid></control><display><type>article</type><title>Location of steel reinforcement in concrete using ground penetrating radar and neural networks</title><source>ScienceDirect Freedom Collection</source><creator>Shaw, M.R. ; Millard, S.G. ; Molyneaux, T.C.K. ; Taylor, M.J. ; Bungey, J.H.</creator><creatorcontrib>Shaw, M.R. ; Millard, S.G. ; Molyneaux, T.C.K. ; Taylor, M.J. ; Bungey, J.H.</creatorcontrib><description>Ground-penetrating radar is becoming increasingly popular for use as a non-destructive assessment method for investigating reinforced concrete structures. The amount of data collected however can be very large and take a significant level of subjective experience to interpret. This study focuses upon the use of a neural network approach to automate and facilitate the post-processing of ground penetrating radar results. The radar data is reduced to a simplified data set by using an edge detection routine. Signal reflections from reinforcing bars displaying a hyperbolic image format are detected using a multi-layer perceptron (MLP) network with a single hidden layer containing 8 nodes to recognise a simplified hyperbolic shape. Training and testing of the network was carried out making use of an emulsion analogue tank, simulating the properties of concrete, and using real concrete specimens. The results showed that the use of a MLP neural network approach could be quite effective in automating the identification and location of embedded steel reinforcing bars from a radar investigation. Accurate estimation of depth, or cover, requires a reliable knowledge of the dielectric properties of the concrete, and recent work using a specially-developed wideband horn antenna for direct determination of in situ properties is also outlined.</description><identifier>ISSN: 0963-8695</identifier><identifier>EISSN: 1879-1174</identifier><identifier>DOI: 10.1016/j.ndteint.2004.06.011</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Buildings. Public works ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Ground penetrating radar ; Materials science ; Materials testing ; Measurements. Technique of testing ; Multi-layer perceptron ; Neural network ; Pattern recognition ; Physics</subject><ispartof>NDT & E international, 2005-04, Vol.38 (3), p.203-212</ispartof><rights>2004 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-2326ba5b23b4e2cb8aad2f10ace1a85779c805c7d12b309a322ff237152ac1f13</citedby><cites>FETCH-LOGICAL-c432t-2326ba5b23b4e2cb8aad2f10ace1a85779c805c7d12b309a322ff237152ac1f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16479789$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaw, M.R.</creatorcontrib><creatorcontrib>Millard, S.G.</creatorcontrib><creatorcontrib>Molyneaux, T.C.K.</creatorcontrib><creatorcontrib>Taylor, M.J.</creatorcontrib><creatorcontrib>Bungey, J.H.</creatorcontrib><title>Location of steel reinforcement in concrete using ground penetrating radar and neural networks</title><title>NDT & E international</title><description>Ground-penetrating radar is becoming increasingly popular for use as a non-destructive assessment method for investigating reinforced concrete structures. The amount of data collected however can be very large and take a significant level of subjective experience to interpret. This study focuses upon the use of a neural network approach to automate and facilitate the post-processing of ground penetrating radar results. The radar data is reduced to a simplified data set by using an edge detection routine. Signal reflections from reinforcing bars displaying a hyperbolic image format are detected using a multi-layer perceptron (MLP) network with a single hidden layer containing 8 nodes to recognise a simplified hyperbolic shape. Training and testing of the network was carried out making use of an emulsion analogue tank, simulating the properties of concrete, and using real concrete specimens. The results showed that the use of a MLP neural network approach could be quite effective in automating the identification and location of embedded steel reinforcing bars from a radar investigation. Accurate estimation of depth, or cover, requires a reliable knowledge of the dielectric properties of the concrete, and recent work using a specially-developed wideband horn antenna for direct determination of in situ properties is also outlined.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Ground penetrating radar</subject><subject>Materials science</subject><subject>Materials testing</subject><subject>Measurements. Technique of testing</subject><subject>Multi-layer perceptron</subject><subject>Neural network</subject><subject>Pattern recognition</subject><subject>Physics</subject><issn>0963-8695</issn><issn>1879-1174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkU9r3DAUxEVpods0HyGgS3uzqz-2JZ9CCU1SWOilvVY8y09BW6-0keSWfPto2YUek9OD4Tcz8IaQK85azvjwZdeGuaAPpRWMdS0bWsb5G7LhWo0N56p7SzZsHGSjh7F_Tz7kvGOMiU6qDfm9jRaKj4FGR3NBXGiqUS4mi3sMhfpAbQw2YUG6Zh8e6EOKa5jpAQOWVL1VSjBDolDVgGuCpZ7yL6Y_-SN552DJeHm-F-TX7befN_fN9sfd95uv28Z2UpRGSDFM0E9CTh0KO2mAWTjOwCIH3Ss1Ws16q2YuJslGkEI4J6TivQDLHZcX5PMp95Di44q5mL3PFpcFAsY1G6FHwRXrXgFqNnS8fwXYy_pTXcH-BNoUc07ozCH5PaQnw5k57mN25ryPOe5j2GDqPtX36VwA2cLiEgTr83_z0KlR6bFy1ycO6__-ekwmW4_B4uwT2mLm6F9oegZngqoT</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Shaw, M.R.</creator><creator>Millard, S.G.</creator><creator>Molyneaux, T.C.K.</creator><creator>Taylor, M.J.</creator><creator>Bungey, J.H.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>20050401</creationdate><title>Location of steel reinforcement in concrete using ground penetrating radar and neural networks</title><author>Shaw, M.R. ; Millard, S.G. ; Molyneaux, T.C.K. ; Taylor, M.J. ; Bungey, J.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-2326ba5b23b4e2cb8aad2f10ace1a85779c805c7d12b309a322ff237152ac1f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Ground penetrating radar</topic><topic>Materials science</topic><topic>Materials testing</topic><topic>Measurements. Technique of testing</topic><topic>Multi-layer perceptron</topic><topic>Neural network</topic><topic>Pattern recognition</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaw, M.R.</creatorcontrib><creatorcontrib>Millard, S.G.</creatorcontrib><creatorcontrib>Molyneaux, T.C.K.</creatorcontrib><creatorcontrib>Taylor, M.J.</creatorcontrib><creatorcontrib>Bungey, J.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>NDT & E international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaw, M.R.</au><au>Millard, S.G.</au><au>Molyneaux, T.C.K.</au><au>Taylor, M.J.</au><au>Bungey, J.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Location of steel reinforcement in concrete using ground penetrating radar and neural networks</atitle><jtitle>NDT & E international</jtitle><date>2005-04-01</date><risdate>2005</risdate><volume>38</volume><issue>3</issue><spage>203</spage><epage>212</epage><pages>203-212</pages><issn>0963-8695</issn><eissn>1879-1174</eissn><abstract>Ground-penetrating radar is becoming increasingly popular for use as a non-destructive assessment method for investigating reinforced concrete structures. The amount of data collected however can be very large and take a significant level of subjective experience to interpret. This study focuses upon the use of a neural network approach to automate and facilitate the post-processing of ground penetrating radar results. The radar data is reduced to a simplified data set by using an edge detection routine. Signal reflections from reinforcing bars displaying a hyperbolic image format are detected using a multi-layer perceptron (MLP) network with a single hidden layer containing 8 nodes to recognise a simplified hyperbolic shape. Training and testing of the network was carried out making use of an emulsion analogue tank, simulating the properties of concrete, and using real concrete specimens. The results showed that the use of a MLP neural network approach could be quite effective in automating the identification and location of embedded steel reinforcing bars from a radar investigation. Accurate estimation of depth, or cover, requires a reliable knowledge of the dielectric properties of the concrete, and recent work using a specially-developed wideband horn antenna for direct determination of in situ properties is also outlined.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ndteint.2004.06.011</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0963-8695 |
ispartof | NDT & E international, 2005-04, Vol.38 (3), p.203-212 |
issn | 0963-8695 1879-1174 |
language | eng |
recordid | cdi_proquest_miscellaneous_28921704 |
source | ScienceDirect Freedom Collection |
subjects | Applied sciences Buildings. Public works Cross-disciplinary physics: materials science rheology Exact sciences and technology Ground penetrating radar Materials science Materials testing Measurements. Technique of testing Multi-layer perceptron Neural network Pattern recognition Physics |
title | Location of steel reinforcement in concrete using ground penetrating radar and neural networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Location%20of%20steel%20reinforcement%20in%20concrete%20using%20ground%20penetrating%20radar%20and%20neural%20networks&rft.jtitle=NDT%20&%20E%20international&rft.au=Shaw,%20M.R.&rft.date=2005-04-01&rft.volume=38&rft.issue=3&rft.spage=203&rft.epage=212&rft.pages=203-212&rft.issn=0963-8695&rft.eissn=1879-1174&rft_id=info:doi/10.1016/j.ndteint.2004.06.011&rft_dat=%3Cproquest_cross%3E28539638%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c432t-2326ba5b23b4e2cb8aad2f10ace1a85779c805c7d12b309a322ff237152ac1f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28539638&rft_id=info:pmid/&rfr_iscdi=true |