Loading…
Joint classification and pairing of human chromosomes
We reexamine the problems of computer-aided classification and pairing of human chromosomes, and propose to jointly optimize the solutions of these two related problems. The combined problem is formulated into one of optimal three-dimensional assignment with an objective function of maximum likeliho...
Saved in:
Published in: | IEEE/ACM transactions on computational biology and bioinformatics 2005-04, Vol.2 (2), p.102-109 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c430t-72e772d0f9bd120967e1fc72510ca801040c829d1a712b6b8ca314ac2d3f164e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c430t-72e772d0f9bd120967e1fc72510ca801040c829d1a712b6b8ca314ac2d3f164e3 |
container_end_page | 109 |
container_issue | 2 |
container_start_page | 102 |
container_title | IEEE/ACM transactions on computational biology and bioinformatics |
container_volume | 2 |
creator | Biyani, P. Xiaolin Wu Sinha, A. |
description | We reexamine the problems of computer-aided classification and pairing of human chromosomes, and propose to jointly optimize the solutions of these two related problems. The combined problem is formulated into one of optimal three-dimensional assignment with an objective function of maximum likelihood. This formulation poses two technical challenges: 1) estimation of the posterior probability that two chromosomes form a pair and the pair belongs to a class and 2) good heuristic algorithms to solve the three-dimensional assignment problem which is NP-hard. We present various techniques to solve these problems. We also generalize our algorithms to cases where the cell data are incomplete as often encountered in practice. |
doi_str_mv | 10.1109/TCBB.2005.26 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28924773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1438347</ieee_id><sourcerecordid>883031939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-72e772d0f9bd120967e1fc72510ca801040c829d1a712b6b8ca314ac2d3f164e3</originalsourceid><addsrcrecordid>eNqN0T1PwzAQBmALgWgpbGxIKGKAhZQ7f8TxSCs-VYmlzJHrONRVE5c4Gfj3JGqlSgzA5JP86O50LyHnCGNEUHfz6WQypgBiTJMDMkQhZKxUwg_7motYqIQNyEkIKwDKFfBjMkAJnKMUQyJevauayKx1CK5wRjfOV5Gu8mijXe2qj8gX0bItdRWZZe1LH3xpwyk5KvQ62LPdOyLvjw_z6XM8e3t6md7PYsMZNLGkVkqaQ6EWOVJQibRYGEkFgtEpIHAwKVU5aol0kSxSoxlybWjOCky4ZSNys-27qf1na0OTlS4Yu17ryvo2ZGnKgKFiqpPXv0oJmKIA9iekqaJcyv9AQE4pdvDqB1z5tq66u_T7cUiZFB263SJT-xBqW2Sb2pW6_soQsj7HrM8x63PMaNLxy13PdlHafI93wXXgYguctXb_zVk3UbJv0xSdyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883408375</pqid></control><display><type>article</type><title>Joint classification and pairing of human chromosomes</title><source>IEEE Electronic Library (IEL) Journals</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Biyani, P. ; Xiaolin Wu ; Sinha, A.</creator><creatorcontrib>Biyani, P. ; Xiaolin Wu ; Sinha, A.</creatorcontrib><description>We reexamine the problems of computer-aided classification and pairing of human chromosomes, and propose to jointly optimize the solutions of these two related problems. The combined problem is formulated into one of optimal three-dimensional assignment with an objective function of maximum likelihood. This formulation poses two technical challenges: 1) estimation of the posterior probability that two chromosomes form a pair and the pair belongs to a class and 2) good heuristic algorithms to solve the three-dimensional assignment problem which is NP-hard. We present various techniques to solve these problems. We also generalize our algorithms to cases where the cell data are incomplete as often encountered in practice.</description><identifier>ISSN: 1545-5963</identifier><identifier>EISSN: 1557-9964</identifier><identifier>DOI: 10.1109/TCBB.2005.26</identifier><identifier>PMID: 17044175</identifier><identifier>CODEN: ITCBCY</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Biological cells ; Cells (biology) ; Chromosome classification ; Chromosomes, Human - genetics ; Chromosomes, Human - ultrastructure ; Genetics ; Heuristic algorithms ; homologue pairing ; Humans ; Image Interpretation, Computer-Assisted - methods ; Imaging, Three-Dimensional - methods ; Karyotyping - methods ; Likelihood Functions ; Linear programming ; Maximum likelihood estimation ; Neural networks ; optimization ; Pattern Recognition, Automated - methods ; Testing ; three-dimensional assignment ; Transportation</subject><ispartof>IEEE/ACM transactions on computational biology and bioinformatics, 2005-04, Vol.2 (2), p.102-109</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-72e772d0f9bd120967e1fc72510ca801040c829d1a712b6b8ca314ac2d3f164e3</citedby><cites>FETCH-LOGICAL-c430t-72e772d0f9bd120967e1fc72510ca801040c829d1a712b6b8ca314ac2d3f164e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1438347$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17044175$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Biyani, P.</creatorcontrib><creatorcontrib>Xiaolin Wu</creatorcontrib><creatorcontrib>Sinha, A.</creatorcontrib><title>Joint classification and pairing of human chromosomes</title><title>IEEE/ACM transactions on computational biology and bioinformatics</title><addtitle>TCBB</addtitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><description>We reexamine the problems of computer-aided classification and pairing of human chromosomes, and propose to jointly optimize the solutions of these two related problems. The combined problem is formulated into one of optimal three-dimensional assignment with an objective function of maximum likelihood. This formulation poses two technical challenges: 1) estimation of the posterior probability that two chromosomes form a pair and the pair belongs to a class and 2) good heuristic algorithms to solve the three-dimensional assignment problem which is NP-hard. We present various techniques to solve these problems. We also generalize our algorithms to cases where the cell data are incomplete as often encountered in practice.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biological cells</subject><subject>Cells (biology)</subject><subject>Chromosome classification</subject><subject>Chromosomes, Human - genetics</subject><subject>Chromosomes, Human - ultrastructure</subject><subject>Genetics</subject><subject>Heuristic algorithms</subject><subject>homologue pairing</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Karyotyping - methods</subject><subject>Likelihood Functions</subject><subject>Linear programming</subject><subject>Maximum likelihood estimation</subject><subject>Neural networks</subject><subject>optimization</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Testing</subject><subject>three-dimensional assignment</subject><subject>Transportation</subject><issn>1545-5963</issn><issn>1557-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqN0T1PwzAQBmALgWgpbGxIKGKAhZQ7f8TxSCs-VYmlzJHrONRVE5c4Gfj3JGqlSgzA5JP86O50LyHnCGNEUHfz6WQypgBiTJMDMkQhZKxUwg_7motYqIQNyEkIKwDKFfBjMkAJnKMUQyJevauayKx1CK5wRjfOV5Gu8mijXe2qj8gX0bItdRWZZe1LH3xpwyk5KvQ62LPdOyLvjw_z6XM8e3t6md7PYsMZNLGkVkqaQ6EWOVJQibRYGEkFgtEpIHAwKVU5aol0kSxSoxlybWjOCky4ZSNys-27qf1na0OTlS4Yu17ryvo2ZGnKgKFiqpPXv0oJmKIA9iekqaJcyv9AQE4pdvDqB1z5tq66u_T7cUiZFB263SJT-xBqW2Sb2pW6_soQsj7HrM8x63PMaNLxy13PdlHafI93wXXgYguctXb_zVk3UbJv0xSdyg</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Biyani, P.</creator><creator>Xiaolin Wu</creator><creator>Sinha, A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>RC3</scope></search><sort><creationdate>20050401</creationdate><title>Joint classification and pairing of human chromosomes</title><author>Biyani, P. ; Xiaolin Wu ; Sinha, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-72e772d0f9bd120967e1fc72510ca801040c829d1a712b6b8ca314ac2d3f164e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biological cells</topic><topic>Cells (biology)</topic><topic>Chromosome classification</topic><topic>Chromosomes, Human - genetics</topic><topic>Chromosomes, Human - ultrastructure</topic><topic>Genetics</topic><topic>Heuristic algorithms</topic><topic>homologue pairing</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Karyotyping - methods</topic><topic>Likelihood Functions</topic><topic>Linear programming</topic><topic>Maximum likelihood estimation</topic><topic>Neural networks</topic><topic>optimization</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Testing</topic><topic>three-dimensional assignment</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biyani, P.</creatorcontrib><creatorcontrib>Xiaolin Wu</creatorcontrib><creatorcontrib>Sinha, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Genetics Abstracts</collection><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biyani, P.</au><au>Xiaolin Wu</au><au>Sinha, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint classification and pairing of human chromosomes</atitle><jtitle>IEEE/ACM transactions on computational biology and bioinformatics</jtitle><stitle>TCBB</stitle><addtitle>IEEE/ACM Trans Comput Biol Bioinform</addtitle><date>2005-04-01</date><risdate>2005</risdate><volume>2</volume><issue>2</issue><spage>102</spage><epage>109</epage><pages>102-109</pages><issn>1545-5963</issn><eissn>1557-9964</eissn><coden>ITCBCY</coden><abstract>We reexamine the problems of computer-aided classification and pairing of human chromosomes, and propose to jointly optimize the solutions of these two related problems. The combined problem is formulated into one of optimal three-dimensional assignment with an objective function of maximum likelihood. This formulation poses two technical challenges: 1) estimation of the posterior probability that two chromosomes form a pair and the pair belongs to a class and 2) good heuristic algorithms to solve the three-dimensional assignment problem which is NP-hard. We present various techniques to solve these problems. We also generalize our algorithms to cases where the cell data are incomplete as often encountered in practice.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>17044175</pmid><doi>10.1109/TCBB.2005.26</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-5963 |
ispartof | IEEE/ACM transactions on computational biology and bioinformatics, 2005-04, Vol.2 (2), p.102-109 |
issn | 1545-5963 1557-9964 |
language | eng |
recordid | cdi_proquest_miscellaneous_28924773 |
source | IEEE Electronic Library (IEL) Journals; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
subjects | Algorithms Artificial Intelligence Biological cells Cells (biology) Chromosome classification Chromosomes, Human - genetics Chromosomes, Human - ultrastructure Genetics Heuristic algorithms homologue pairing Humans Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods Karyotyping - methods Likelihood Functions Linear programming Maximum likelihood estimation Neural networks optimization Pattern Recognition, Automated - methods Testing three-dimensional assignment Transportation |
title | Joint classification and pairing of human chromosomes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A24%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20classification%20and%20pairing%20of%20human%20chromosomes&rft.jtitle=IEEE/ACM%20transactions%20on%20computational%20biology%20and%20bioinformatics&rft.au=Biyani,%20P.&rft.date=2005-04-01&rft.volume=2&rft.issue=2&rft.spage=102&rft.epage=109&rft.pages=102-109&rft.issn=1545-5963&rft.eissn=1557-9964&rft.coden=ITCBCY&rft_id=info:doi/10.1109/TCBB.2005.26&rft_dat=%3Cproquest_cross%3E883031939%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-72e772d0f9bd120967e1fc72510ca801040c829d1a712b6b8ca314ac2d3f164e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=883408375&rft_id=info:pmid/17044175&rft_ieee_id=1438347&rfr_iscdi=true |