Loading…

Debonding of a thermoelastic material from a rigid substrate at any constant speed : thermal relaxation effects

A linear isotropic thermoelastic half-space is debonded from a rigid insulated substrate at constant speed by moving shear and normal line loads. A dynamic steady state is examined, and an exact transform solution for the related problem of an insulated half-space subjected to a moving zone of speci...

Full description

Saved in:
Bibliographic Details
Published in:Acta mechanica 2006-07, Vol.184 (1-4), p.171-188
Main Author: BROCK, L. M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-e53464b276494324809d76d561c806fab31197bb1262a52645c9cfcd5225ea703
cites cdi_FETCH-LOGICAL-c333t-e53464b276494324809d76d561c806fab31197bb1262a52645c9cfcd5225ea703
container_end_page 188
container_issue 1-4
container_start_page 171
container_title Acta mechanica
container_volume 184
creator BROCK, L. M
description A linear isotropic thermoelastic half-space is debonded from a rigid insulated substrate at constant speed by moving shear and normal line loads. A dynamic steady state is examined, and an exact transform solution for the related problem of an insulated half-space subjected to a moving zone of specified surface displacements is obtained. Asymptotic forms are extracted that are valid near the zone edge and for high speeds, and which highlight thermal relaxation effects. They are used to derive analytical results for debonding at any constant speed. In particular, field variables on the debonded surface and the still-bonded interface are given for the sub-Rayleigh, super-Rayleigh/subsonic, lower and upper transonic, and supersonic speed ranges. The degenerate cases that arise at the three body wave speeds and at twice the rotational wave speed are also given. Calculations for the dynamic fracture energy rate and debonding zone temperature change at sub-Rayleigh speeds in 4340 steel indicate that thermal relaxation enhances energy rate, but mutes thermal response. The latter effect, however, itself decreases as the Rayleigh speed is approached. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s00707-006-0334-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28929448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1069627441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-e53464b276494324809d76d561c806fab31197bb1262a52645c9cfcd5225ea703</originalsourceid><addsrcrecordid>eNpdkE9rVTEQxYNY8Nn6AdwFQXe35n9e3Em1VSi40XWYm5vUlHuTZyYP7Lc35RWEbmYYzjk_hkPIW84uOWP2I47B7MSYmZiUarIvyI4b7ibjpH1JdowxPmln2SvyGvF-XMIqviP1S5xrWXK5ozVRoP13bFuNK2DPgW7QY8uw0tTqNtSW7_JC8Thjb0Oi0CmUBxpqwQ6lUzzEuNBPJ8qItQH6Cz3XQmNKMXS8IGcJVoxvnvY5-XX99efVt-n2x833q8-3U5BS9ilqqYyahTXKKSnUnrnFmkUbHvbMJJgl587OMxdGgBZG6eBCCosWQkewTJ6TDyfuodU_x4jdbxlDXFcosR7Ri70TTqn9ML57Zryvx1bGb14IabjQnA8TP5lCq4gtJn9oeYP24Dnzj_37U_9-9O8f-_d2ZN4_gQEDrKlBCRn_B62T2mgm_wHa6oTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223612511</pqid></control><display><type>article</type><title>Debonding of a thermoelastic material from a rigid substrate at any constant speed : thermal relaxation effects</title><source>Springer Nature</source><creator>BROCK, L. M</creator><creatorcontrib>BROCK, L. M</creatorcontrib><description>A linear isotropic thermoelastic half-space is debonded from a rigid insulated substrate at constant speed by moving shear and normal line loads. A dynamic steady state is examined, and an exact transform solution for the related problem of an insulated half-space subjected to a moving zone of specified surface displacements is obtained. Asymptotic forms are extracted that are valid near the zone edge and for high speeds, and which highlight thermal relaxation effects. They are used to derive analytical results for debonding at any constant speed. In particular, field variables on the debonded surface and the still-bonded interface are given for the sub-Rayleigh, super-Rayleigh/subsonic, lower and upper transonic, and supersonic speed ranges. The degenerate cases that arise at the three body wave speeds and at twice the rotational wave speed are also given. Calculations for the dynamic fracture energy rate and debonding zone temperature change at sub-Rayleigh speeds in 4340 steel indicate that thermal relaxation enhances energy rate, but mutes thermal response. The latter effect, however, itself decreases as the Rayleigh speed is approached. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-006-0334-7</identifier><identifier>CODEN: AMHCAP</identifier><language>eng</language><publisher>Wien: Springer</publisher><subject>Exact sciences and technology ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Insulation ; Physics ; Shear strain ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Stress relaxation ; Structural and continuum mechanics ; Substrates ; Thermal energy</subject><ispartof>Acta mechanica, 2006-07, Vol.184 (1-4), p.171-188</ispartof><rights>2006 INIST-CNRS</rights><rights>Springer-Verlag Wien 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-e53464b276494324809d76d561c806fab31197bb1262a52645c9cfcd5225ea703</citedby><cites>FETCH-LOGICAL-c333t-e53464b276494324809d76d561c806fab31197bb1262a52645c9cfcd5225ea703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17935650$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BROCK, L. M</creatorcontrib><title>Debonding of a thermoelastic material from a rigid substrate at any constant speed : thermal relaxation effects</title><title>Acta mechanica</title><description>A linear isotropic thermoelastic half-space is debonded from a rigid insulated substrate at constant speed by moving shear and normal line loads. A dynamic steady state is examined, and an exact transform solution for the related problem of an insulated half-space subjected to a moving zone of specified surface displacements is obtained. Asymptotic forms are extracted that are valid near the zone edge and for high speeds, and which highlight thermal relaxation effects. They are used to derive analytical results for debonding at any constant speed. In particular, field variables on the debonded surface and the still-bonded interface are given for the sub-Rayleigh, super-Rayleigh/subsonic, lower and upper transonic, and supersonic speed ranges. The degenerate cases that arise at the three body wave speeds and at twice the rotational wave speed are also given. Calculations for the dynamic fracture energy rate and debonding zone temperature change at sub-Rayleigh speeds in 4340 steel indicate that thermal relaxation enhances energy rate, but mutes thermal response. The latter effect, however, itself decreases as the Rayleigh speed is approached. [PUBLICATION ABSTRACT]</description><subject>Exact sciences and technology</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Insulation</subject><subject>Physics</subject><subject>Shear strain</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Stress relaxation</subject><subject>Structural and continuum mechanics</subject><subject>Substrates</subject><subject>Thermal energy</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpdkE9rVTEQxYNY8Nn6AdwFQXe35n9e3Em1VSi40XWYm5vUlHuTZyYP7Lc35RWEbmYYzjk_hkPIW84uOWP2I47B7MSYmZiUarIvyI4b7ibjpH1JdowxPmln2SvyGvF-XMIqviP1S5xrWXK5ozVRoP13bFuNK2DPgW7QY8uw0tTqNtSW7_JC8Thjb0Oi0CmUBxpqwQ6lUzzEuNBPJ8qItQH6Cz3XQmNKMXS8IGcJVoxvnvY5-XX99efVt-n2x833q8-3U5BS9ilqqYyahTXKKSnUnrnFmkUbHvbMJJgl587OMxdGgBZG6eBCCosWQkewTJ6TDyfuodU_x4jdbxlDXFcosR7Ri70TTqn9ML57Zryvx1bGb14IabjQnA8TP5lCq4gtJn9oeYP24Dnzj_37U_9-9O8f-_d2ZN4_gQEDrKlBCRn_B62T2mgm_wHa6oTA</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>BROCK, L. M</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20060701</creationdate><title>Debonding of a thermoelastic material from a rigid substrate at any constant speed : thermal relaxation effects</title><author>BROCK, L. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-e53464b276494324809d76d561c806fab31197bb1262a52645c9cfcd5225ea703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Exact sciences and technology</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Insulation</topic><topic>Physics</topic><topic>Shear strain</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Stress relaxation</topic><topic>Structural and continuum mechanics</topic><topic>Substrates</topic><topic>Thermal energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BROCK, L. M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BROCK, L. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Debonding of a thermoelastic material from a rigid substrate at any constant speed : thermal relaxation effects</atitle><jtitle>Acta mechanica</jtitle><date>2006-07-01</date><risdate>2006</risdate><volume>184</volume><issue>1-4</issue><spage>171</spage><epage>188</epage><pages>171-188</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><coden>AMHCAP</coden><abstract>A linear isotropic thermoelastic half-space is debonded from a rigid insulated substrate at constant speed by moving shear and normal line loads. A dynamic steady state is examined, and an exact transform solution for the related problem of an insulated half-space subjected to a moving zone of specified surface displacements is obtained. Asymptotic forms are extracted that are valid near the zone edge and for high speeds, and which highlight thermal relaxation effects. They are used to derive analytical results for debonding at any constant speed. In particular, field variables on the debonded surface and the still-bonded interface are given for the sub-Rayleigh, super-Rayleigh/subsonic, lower and upper transonic, and supersonic speed ranges. The degenerate cases that arise at the three body wave speeds and at twice the rotational wave speed are also given. Calculations for the dynamic fracture energy rate and debonding zone temperature change at sub-Rayleigh speeds in 4340 steel indicate that thermal relaxation enhances energy rate, but mutes thermal response. The latter effect, however, itself decreases as the Rayleigh speed is approached. [PUBLICATION ABSTRACT]</abstract><cop>Wien</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s00707-006-0334-7</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-5970
ispartof Acta mechanica, 2006-07, Vol.184 (1-4), p.171-188
issn 0001-5970
1619-6937
language eng
recordid cdi_proquest_miscellaneous_28929448
source Springer Nature
subjects Exact sciences and technology
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Insulation
Physics
Shear strain
Solid mechanics
Static elasticity (thermoelasticity...)
Stress relaxation
Structural and continuum mechanics
Substrates
Thermal energy
title Debonding of a thermoelastic material from a rigid substrate at any constant speed : thermal relaxation effects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A04%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Debonding%20of%20a%20thermoelastic%20material%20from%20a%20rigid%20substrate%20at%20any%20constant%20speed%20:%20thermal%20relaxation%20effects&rft.jtitle=Acta%20mechanica&rft.au=BROCK,%20L.%20M&rft.date=2006-07-01&rft.volume=184&rft.issue=1-4&rft.spage=171&rft.epage=188&rft.pages=171-188&rft.issn=0001-5970&rft.eissn=1619-6937&rft.coden=AMHCAP&rft_id=info:doi/10.1007/s00707-006-0334-7&rft_dat=%3Cproquest_cross%3E1069627441%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-e53464b276494324809d76d561c806fab31197bb1262a52645c9cfcd5225ea703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=223612511&rft_id=info:pmid/&rfr_iscdi=true