Loading…

Entropy engineering of La-based perovskite for simultaneous photocatalytic CO2 reduction and biomass oxidation

Herein, the high-entropy perovskite, i.e. La(FeCoNiCrMn)O3, was prepared for simultaneous CO2 reduction and biomass upgrading. Based on the synergistic effect between the elements in the high-entropy material, an excellent CO evolution rate of 131.8 μmol g−1 h−1 and a xylonic acid yield of 63.9% wer...

Full description

Saved in:
Bibliographic Details
Published in:Chemical communications (Cambridge, England) England), 2023-12, Vol.59 (99), p.14673-14676
Main Authors: Wang, Mengchen, Li, Liming, Li, Yong, Shi, Xuxia, Ren, Hangxing, Sun, Yuetao, Liu, Kangning, Song, Wei, Li, Huamin, Wang, Haibin, Han, Mei, Wang, Xi, Momo, Christopher Dorma, Chen, Songhua, Liu, Lihua, Liang, Hongyan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Herein, the high-entropy perovskite, i.e. La(FeCoNiCrMn)O3, was prepared for simultaneous CO2 reduction and biomass upgrading. Based on the synergistic effect between the elements in the high-entropy material, an excellent CO evolution rate of 131.8 μmol g−1 h−1 and a xylonic acid yield of 63.9% were gained.
ISSN:1359-7345
1364-548X
DOI:10.1039/d3cc04393b