Loading…
Modeling the MTI electro-optic system sensitivity and resolution
We present an analysis methodology that offers efficient characterization of the Multispectral Thermal Imager (MTI) electro-optic system response to a wide range of user-specified system parameters and spectral scenarios. This methodology combines physics-based modeling of the MTI hardware with MTI...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2005-09, Vol.43 (9), p.1950-1963 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present an analysis methodology that offers efficient characterization of the Multispectral Thermal Imager (MTI) electro-optic system response to a wide range of user-specified system parameters and spectral scenarios. This methodology combines physics-based modeling of the MTI hardware with MTI prelaunch characterization data. The resulting models enable the user to generate application-specific sensitivity and resolution studies of the MTI image capture process, and aid in the development of calibration procedures and retrieval algorithms for MTI. In addition to quantifying the MTI response, the methodology developed in this paper is sufficiently general to permit the prototyping and evaluation of a variety of multispectral electro-optic systems. Finally, an example utilizing nominal orbital parameters and targeted MODTRAN scenarios that exercise the various spectral band functions is provided. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2005.847922 |