Loading…

Perspective and prospects of in situ transmission/scanning transmission electron microscopy

Abstract In situ transmission/scanning transmission electron microscopy (TEM/STEM) measurements have taken a central stage for establishing structure–chemistry–property relationship over the past couple of decades. The challenges for realizing ‘a lab-in-gap’, i.e. gap between the objective lens pole...

Full description

Saved in:
Bibliographic Details
Published in:Microscopy 2024-04, Vol.73 (2), p.79-100
Main Authors: Sharma, Renu, Yang, Wei-Chang David
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract In situ transmission/scanning transmission electron microscopy (TEM/STEM) measurements have taken a central stage for establishing structure–chemistry–property relationship over the past couple of decades. The challenges for realizing ‘a lab-in-gap’, i.e. gap between the objective lens pole pieces, or ‘a lab-on-chip’, to be used to carry out experiments are being met through continuous instrumental developments. Commercially available TEM columns and sample holder, that have been modified for in situ experimentation, have contributed to uncover structural and chemical changes occurring in the sample when subjected to external stimulus such as temperature, pressure, radiation (photon, ions and electrons), environment (gas, liquid and magnetic or electrical field) or a combination thereof. Whereas atomic resolution images and spectroscopy data are being collected routinely using TEM/STEM, temporal resolution is limited to millisecond. On the other hand, better than femtosecond temporal resolution can be achieved using an ultrafast electron microscopy or dynamic TEM, but the spatial resolution is limited to sub-nanometers. In either case, in situ experiments generate large datasets that need to be transferred, stored and analyzed. The advent of artificial intelligence, especially machine learning platforms, is proving crucial to deal with this big data problem. Further developments are still needed in order to fully exploit our capability to understand, measure and control chemical and/or physical processes. We present the current state of instrumental and computational capabilities and discuss future possibilities.
ISSN:2050-5698
2050-5701
DOI:10.1093/jmicro/dfad057