Loading…
Developing a Compressive Failure Theory for Nanocomposites
The paper addresses a compressive-failure theory for polymer-matrix nanocomposites in the case where failure onset is due to microbuckling. Two approaches based on the three-dimensional linearized theory of stability of deformable bodies are applied to laminated and fibrous nanocomposites. According...
Saved in:
Published in: | International applied mechanics 2005-03, Vol.41 (3), p.233-255 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper addresses a compressive-failure theory for polymer-matrix nanocomposites in the case where failure onset is due to microbuckling. Two approaches based on the three-dimensional linearized theory of stability of deformable bodies are applied to laminated and fibrous nanocomposites. According to the first approach (continuum compressive-failure theory), nanocomposites are modeled by a homogeneous anisotropic medium with effective constants, including microstructural parameters. The second approach uses the piecewise-homogeneous model, three-dimensional relations for fibers (CNT) and matrix, and continuity conditions at the fiber-matrix interface. The compressive-failure theory is used to solve specific problems for laminated and fibrous nanocomposites. Some approximate failure theories based on the one- and two-dimensional applied theories of stability of rods, plates, and shells are analyzed |
---|---|
ISSN: | 1063-7095 1573-8582 |
DOI: | 10.1007/s10778-005-0081-9 |