Loading…
Visualization of Charge Dynamics when Water Droplets Bounce on a Hydrophobic Surface
Visualizing the motion of water droplets and understanding their electrification behavior holds significance for applications related to droplet transport, self-cleaning, and anti-icing/deicing and for providing a comprehensive explanation of the solid–liquid triboelectrification mechanism. Here, by...
Saved in:
Published in: | ACS nano 2023-12, Vol.17 (23), p.23977-23988 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Visualizing the motion of water droplets and understanding their electrification behavior holds significance for applications related to droplet transport, self-cleaning, and anti-icing/deicing and for providing a comprehensive explanation of the solid–liquid triboelectrification mechanism. Here, by constructing microcolumnar structures on the polytetrafluoroethylene surface, a water droplet-based single electrode triboelectric nanogenerator was fabricated for visualizing charge dynamics when a water droplet bounces on a hydrophobic surface. The motion state of the water droplet is closely linked to its electrification behavior through the integration of a high-speed camera and an ammeter. The electrification behavior stemming from the bounce of the water droplet is dynamically captured in real-time. The results show that the magnitude and polarity of the electrical signal have strong dependence on the motion state of the water droplet. For instance, when a water droplet approaches or moves away from the substrate in a single direction, a unipolar electrical signal is generated. However, when the water droplet reaches its limit in the initial motion direction, it signifies a static equilibrium state, resulting in the electrical signal being at zero. Furthermore, we examine the impact of factors such as impact speed, drop contact area, contact line spreading/retraction speed, and impact angle on electrification. Finally, based on the close relationship between poly(ethylene oxide) (PEO) droplet bounce dynamics and electrical signals, the bouncing details of PEO droplets with different concentrations are tracked by electrical signals. This study digitally presents the whole process of droplet bounce in situ and provides a means for monitoring and tracking droplet movement. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.3c08742 |