Loading…

A metal ion-coordinated DNA probe for sensitive fluorescence detection of metallothionein via a dual nucleic acid amplification strategy

Sensitively monitoring metallothionein (MT), a heavy metal-binding protein with substantial cysteine content, is of significance for evaluating heavy metal poisoning in both humans and animals. Based on a new metal ion-coordinated DNA probe and the heavy metal ion binding capability of MT, as well a...

Full description

Saved in:
Bibliographic Details
Published in:Dalton transactions : an international journal of inorganic chemistry 2023-12, Vol.52 (48), p.18473-18479
Main Authors: Yin, Zihao, Li, Shunmei, Liu, Xiaoju, Yuan, Ruo, Xiang, Yun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sensitively monitoring metallothionein (MT), a heavy metal-binding protein with substantial cysteine content, is of significance for evaluating heavy metal poisoning in both humans and animals. Based on a new metal ion-coordinated DNA probe and the heavy metal ion binding capability of MT, as well as the substantial signal enhancement of the hybridization chain reaction (HCR) and rolling circle amplification (RCA), we demonstrate a highly sensitive fluorescence MT detection assay. MT binds the metal ions in the hairpin structured, metal ion-coordinated DNA probe to switch its hairpin structure into ssDNA, which triggers subsequent RCA reactions and HCRs to open plenty of fluorescently quenched signal hairpins to exhibit drastically amplified fluorescence recovery for assaying MT down to 0.58 nM within a dynamic range of 1-320 nM. In addition, the investigation of low contents of MT in diluted human serum by such an assay has also been verified, indicating its promising application potential for diagnosing heavy metal poisoning.
ISSN:1477-9226
1477-9234
DOI:10.1039/d3dt03346e