Loading…

An active instance-based machine learning method for stellar population studies

We have developed a method for the determination of fast and accurate stellar population parameters in order to apply it to high-resolution galaxy spectra. The method is based on an optimization technique that combines active learning with an instance-based machine learning algorithm. We tested the...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2005-10, Vol.363 (2), p.543-554
Main Authors: Solorio, Thamar, Fuentes, Olac, Terlevich, Roberto, Terlevich, Elena
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5206-6c92844b404bfbb7e1e784ea7f0a418f77a20c4ad221cc62a49ee1c946ad462c3
cites cdi_FETCH-LOGICAL-c5206-6c92844b404bfbb7e1e784ea7f0a418f77a20c4ad221cc62a49ee1c946ad462c3
container_end_page 554
container_issue 2
container_start_page 543
container_title Monthly notices of the Royal Astronomical Society
container_volume 363
creator Solorio, Thamar
Fuentes, Olac
Terlevich, Roberto
Terlevich, Elena
description We have developed a method for the determination of fast and accurate stellar population parameters in order to apply it to high-resolution galaxy spectra. The method is based on an optimization technique that combines active learning with an instance-based machine learning algorithm. We tested the method with the retrieval of the star formation history and dust content in ‘synthetic’ galaxies with a wide range of signal-to-noise ratios (S/N). The ‘synthetic’ galaxies were constructed using two different grids of high-resolution theoretical population synthesis models. The results of our controlled experiment show that our method can estimate with good speed and accuracy the parameters of the stellar populations that make up the galaxy even for very low S/N input. For a spectrum with S/N = 5 the typical average deviation between the input and fitted spectrum is less than 10−5. Additional improvements are achieved using prior knowledge.
doi_str_mv 10.1111/j.1365-2966.2005.09456.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28950558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926566651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5206-6c92844b404bfbb7e1e784ea7f0a418f77a20c4ad221cc62a49ee1c946ad462c3</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhS1EJYbCf7CQYJdgO34kCxZtVShqaREPCbGxbpwb6iHjDHYC03-P06mKxKre2LK_c3R9DiGUs5Ln9Xpd8kqrQjRal4IxVbJGKl3uHpHV_cNjsmKsUkVtOH9Cnqa0ZozJSugVuToKFNzkfyP1IU0QHBYtJOzoBty1D0gHhBh8-EE3OF2PHe3HSNOEwwCRbsftPMDkx5Cv5s5jekYOehgSPr_bD8nXt6dfTs6Ki6t370-OLgqnBNOFdo2opWwlk23ftgY5mloimJ6B5HVvDAjmJHRCcOe0ANkgctdIDZ3UwlWH5NXedxvHXzOmyW58cstUAcc5WVE3iilVPwBkmgvGM_jiP3A9zjHkT1jBTCV5U-sM1XvIxTGliL3dRr-BeGM5s0sfdm2X2O0Su136sLd92F2Wvrzzh-Rg6GPO2qd_esNVY2qTuTd77o8f8ObB_vbD5afllPXFXu9zS7t7PcSfVpvKKHv27bvVx8fm4-fsc179Bc7GrMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207341986</pqid></control><display><type>article</type><title>An active instance-based machine learning method for stellar population studies</title><source>EZB Free E-Journals</source><source>Oxford University Press Journals Open Access</source><creator>Solorio, Thamar ; Fuentes, Olac ; Terlevich, Roberto ; Terlevich, Elena</creator><creatorcontrib>Solorio, Thamar ; Fuentes, Olac ; Terlevich, Roberto ; Terlevich, Elena</creatorcontrib><description>We have developed a method for the determination of fast and accurate stellar population parameters in order to apply it to high-resolution galaxy spectra. The method is based on an optimization technique that combines active learning with an instance-based machine learning algorithm. We tested the method with the retrieval of the star formation history and dust content in ‘synthetic’ galaxies with a wide range of signal-to-noise ratios (S/N). The ‘synthetic’ galaxies were constructed using two different grids of high-resolution theoretical population synthesis models. The results of our controlled experiment show that our method can estimate with good speed and accuracy the parameters of the stellar populations that make up the galaxy even for very low S/N input. For a spectrum with S/N = 5 the typical average deviation between the input and fitted spectrum is less than 10−5. Additional improvements are achieved using prior knowledge.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1111/j.1365-2966.2005.09456.x</identifier><identifier>CODEN: MNRAA4</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Astronomy ; galaxies: fundamental parameters ; galaxies: stellar content ; methods: data analysis ; methods: numerical ; methods: statistical ; Optimization algorithms ; Signal to noise ratio ; Stars &amp; galaxies</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2005-10, Vol.363 (2), p.543-554</ispartof><rights>2005 INIST-CNRS</rights><rights>2005 RAS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5206-6c92844b404bfbb7e1e784ea7f0a418f77a20c4ad221cc62a49ee1c946ad462c3</citedby><cites>FETCH-LOGICAL-c5206-6c92844b404bfbb7e1e784ea7f0a418f77a20c4ad221cc62a49ee1c946ad462c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17159787$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Solorio, Thamar</creatorcontrib><creatorcontrib>Fuentes, Olac</creatorcontrib><creatorcontrib>Terlevich, Roberto</creatorcontrib><creatorcontrib>Terlevich, Elena</creatorcontrib><title>An active instance-based machine learning method for stellar population studies</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Mon. Not. R. Astron. Soc</addtitle><description>We have developed a method for the determination of fast and accurate stellar population parameters in order to apply it to high-resolution galaxy spectra. The method is based on an optimization technique that combines active learning with an instance-based machine learning algorithm. We tested the method with the retrieval of the star formation history and dust content in ‘synthetic’ galaxies with a wide range of signal-to-noise ratios (S/N). The ‘synthetic’ galaxies were constructed using two different grids of high-resolution theoretical population synthesis models. The results of our controlled experiment show that our method can estimate with good speed and accuracy the parameters of the stellar populations that make up the galaxy even for very low S/N input. For a spectrum with S/N = 5 the typical average deviation between the input and fitted spectrum is less than 10−5. Additional improvements are achieved using prior knowledge.</description><subject>Astronomy</subject><subject>galaxies: fundamental parameters</subject><subject>galaxies: stellar content</subject><subject>methods: data analysis</subject><subject>methods: numerical</subject><subject>methods: statistical</subject><subject>Optimization algorithms</subject><subject>Signal to noise ratio</subject><subject>Stars &amp; galaxies</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkUtv1DAUhS1EJYbCf7CQYJdgO34kCxZtVShqaREPCbGxbpwb6iHjDHYC03-P06mKxKre2LK_c3R9DiGUs5Ln9Xpd8kqrQjRal4IxVbJGKl3uHpHV_cNjsmKsUkVtOH9Cnqa0ZozJSugVuToKFNzkfyP1IU0QHBYtJOzoBty1D0gHhBh8-EE3OF2PHe3HSNOEwwCRbsftPMDkx5Cv5s5jekYOehgSPr_bD8nXt6dfTs6Ki6t370-OLgqnBNOFdo2opWwlk23ftgY5mloimJ6B5HVvDAjmJHRCcOe0ANkgctdIDZ3UwlWH5NXedxvHXzOmyW58cstUAcc5WVE3iilVPwBkmgvGM_jiP3A9zjHkT1jBTCV5U-sM1XvIxTGliL3dRr-BeGM5s0sfdm2X2O0Su136sLd92F2Wvrzzh-Rg6GPO2qd_esNVY2qTuTd77o8f8ObB_vbD5afllPXFXu9zS7t7PcSfVpvKKHv27bvVx8fm4-fsc179Bc7GrMI</recordid><startdate>20051021</startdate><enddate>20051021</enddate><creator>Solorio, Thamar</creator><creator>Fuentes, Olac</creator><creator>Terlevich, Roberto</creator><creator>Terlevich, Elena</creator><general>Blackwell Science Ltd</general><general>Blackwell Science</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7U5</scope></search><sort><creationdate>20051021</creationdate><title>An active instance-based machine learning method for stellar population studies</title><author>Solorio, Thamar ; Fuentes, Olac ; Terlevich, Roberto ; Terlevich, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5206-6c92844b404bfbb7e1e784ea7f0a418f77a20c4ad221cc62a49ee1c946ad462c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Astronomy</topic><topic>galaxies: fundamental parameters</topic><topic>galaxies: stellar content</topic><topic>methods: data analysis</topic><topic>methods: numerical</topic><topic>methods: statistical</topic><topic>Optimization algorithms</topic><topic>Signal to noise ratio</topic><topic>Stars &amp; galaxies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solorio, Thamar</creatorcontrib><creatorcontrib>Fuentes, Olac</creatorcontrib><creatorcontrib>Terlevich, Roberto</creatorcontrib><creatorcontrib>Terlevich, Elena</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solorio, Thamar</au><au>Fuentes, Olac</au><au>Terlevich, Roberto</au><au>Terlevich, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An active instance-based machine learning method for stellar population studies</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><addtitle>Mon. Not. R. Astron. Soc</addtitle><date>2005-10-21</date><risdate>2005</risdate><volume>363</volume><issue>2</issue><spage>543</spage><epage>554</epage><pages>543-554</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><coden>MNRAA4</coden><abstract>We have developed a method for the determination of fast and accurate stellar population parameters in order to apply it to high-resolution galaxy spectra. The method is based on an optimization technique that combines active learning with an instance-based machine learning algorithm. We tested the method with the retrieval of the star formation history and dust content in ‘synthetic’ galaxies with a wide range of signal-to-noise ratios (S/N). The ‘synthetic’ galaxies were constructed using two different grids of high-resolution theoretical population synthesis models. The results of our controlled experiment show that our method can estimate with good speed and accuracy the parameters of the stellar populations that make up the galaxy even for very low S/N input. For a spectrum with S/N = 5 the typical average deviation between the input and fitted spectrum is less than 10−5. Additional improvements are achieved using prior knowledge.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><doi>10.1111/j.1365-2966.2005.09456.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2005-10, Vol.363 (2), p.543-554
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_28950558
source EZB Free E-Journals; Oxford University Press Journals Open Access
subjects Astronomy
galaxies: fundamental parameters
galaxies: stellar content
methods: data analysis
methods: numerical
methods: statistical
Optimization algorithms
Signal to noise ratio
Stars & galaxies
title An active instance-based machine learning method for stellar population studies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A36%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20active%20instance-based%20machine%20learning%20method%20for%20stellar%20population%20studies&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Solorio,%20Thamar&rft.date=2005-10-21&rft.volume=363&rft.issue=2&rft.spage=543&rft.epage=554&rft.pages=543-554&rft.issn=0035-8711&rft.eissn=1365-2966&rft.coden=MNRAA4&rft_id=info:doi/10.1111/j.1365-2966.2005.09456.x&rft_dat=%3Cproquest_cross%3E926566651%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5206-6c92844b404bfbb7e1e784ea7f0a418f77a20c4ad221cc62a49ee1c946ad462c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=207341986&rft_id=info:pmid/&rfr_iscdi=true