Loading…
An active instance-based machine learning method for stellar population studies
We have developed a method for the determination of fast and accurate stellar population parameters in order to apply it to high-resolution galaxy spectra. The method is based on an optimization technique that combines active learning with an instance-based machine learning algorithm. We tested the...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2005-10, Vol.363 (2), p.543-554 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5206-6c92844b404bfbb7e1e784ea7f0a418f77a20c4ad221cc62a49ee1c946ad462c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5206-6c92844b404bfbb7e1e784ea7f0a418f77a20c4ad221cc62a49ee1c946ad462c3 |
container_end_page | 554 |
container_issue | 2 |
container_start_page | 543 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 363 |
creator | Solorio, Thamar Fuentes, Olac Terlevich, Roberto Terlevich, Elena |
description | We have developed a method for the determination of fast and accurate stellar population parameters in order to apply it to high-resolution galaxy spectra. The method is based on an optimization technique that combines active learning with an instance-based machine learning algorithm. We tested the method with the retrieval of the star formation history and dust content in ‘synthetic’ galaxies with a wide range of signal-to-noise ratios (S/N). The ‘synthetic’ galaxies were constructed using two different grids of high-resolution theoretical population synthesis models. The results of our controlled experiment show that our method can estimate with good speed and accuracy the parameters of the stellar populations that make up the galaxy even for very low S/N input. For a spectrum with S/N = 5 the typical average deviation between the input and fitted spectrum is less than 10−5. Additional improvements are achieved using prior knowledge. |
doi_str_mv | 10.1111/j.1365-2966.2005.09456.x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28950558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>926566651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5206-6c92844b404bfbb7e1e784ea7f0a418f77a20c4ad221cc62a49ee1c946ad462c3</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhS1EJYbCf7CQYJdgO34kCxZtVShqaREPCbGxbpwb6iHjDHYC03-P06mKxKre2LK_c3R9DiGUs5Ln9Xpd8kqrQjRal4IxVbJGKl3uHpHV_cNjsmKsUkVtOH9Cnqa0ZozJSugVuToKFNzkfyP1IU0QHBYtJOzoBty1D0gHhBh8-EE3OF2PHe3HSNOEwwCRbsftPMDkx5Cv5s5jekYOehgSPr_bD8nXt6dfTs6Ki6t370-OLgqnBNOFdo2opWwlk23ftgY5mloimJ6B5HVvDAjmJHRCcOe0ANkgctdIDZ3UwlWH5NXedxvHXzOmyW58cstUAcc5WVE3iilVPwBkmgvGM_jiP3A9zjHkT1jBTCV5U-sM1XvIxTGliL3dRr-BeGM5s0sfdm2X2O0Su136sLd92F2Wvrzzh-Rg6GPO2qd_esNVY2qTuTd77o8f8ObB_vbD5afllPXFXu9zS7t7PcSfVpvKKHv27bvVx8fm4-fsc179Bc7GrMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207341986</pqid></control><display><type>article</type><title>An active instance-based machine learning method for stellar population studies</title><source>EZB Free E-Journals</source><source>Oxford University Press Journals Open Access</source><creator>Solorio, Thamar ; Fuentes, Olac ; Terlevich, Roberto ; Terlevich, Elena</creator><creatorcontrib>Solorio, Thamar ; Fuentes, Olac ; Terlevich, Roberto ; Terlevich, Elena</creatorcontrib><description>We have developed a method for the determination of fast and accurate stellar population parameters in order to apply it to high-resolution galaxy spectra. The method is based on an optimization technique that combines active learning with an instance-based machine learning algorithm. We tested the method with the retrieval of the star formation history and dust content in ‘synthetic’ galaxies with a wide range of signal-to-noise ratios (S/N). The ‘synthetic’ galaxies were constructed using two different grids of high-resolution theoretical population synthesis models. The results of our controlled experiment show that our method can estimate with good speed and accuracy the parameters of the stellar populations that make up the galaxy even for very low S/N input. For a spectrum with S/N = 5 the typical average deviation between the input and fitted spectrum is less than 10−5. Additional improvements are achieved using prior knowledge.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1111/j.1365-2966.2005.09456.x</identifier><identifier>CODEN: MNRAA4</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Astronomy ; galaxies: fundamental parameters ; galaxies: stellar content ; methods: data analysis ; methods: numerical ; methods: statistical ; Optimization algorithms ; Signal to noise ratio ; Stars & galaxies</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2005-10, Vol.363 (2), p.543-554</ispartof><rights>2005 INIST-CNRS</rights><rights>2005 RAS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5206-6c92844b404bfbb7e1e784ea7f0a418f77a20c4ad221cc62a49ee1c946ad462c3</citedby><cites>FETCH-LOGICAL-c5206-6c92844b404bfbb7e1e784ea7f0a418f77a20c4ad221cc62a49ee1c946ad462c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17159787$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Solorio, Thamar</creatorcontrib><creatorcontrib>Fuentes, Olac</creatorcontrib><creatorcontrib>Terlevich, Roberto</creatorcontrib><creatorcontrib>Terlevich, Elena</creatorcontrib><title>An active instance-based machine learning method for stellar population studies</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Mon. Not. R. Astron. Soc</addtitle><description>We have developed a method for the determination of fast and accurate stellar population parameters in order to apply it to high-resolution galaxy spectra. The method is based on an optimization technique that combines active learning with an instance-based machine learning algorithm. We tested the method with the retrieval of the star formation history and dust content in ‘synthetic’ galaxies with a wide range of signal-to-noise ratios (S/N). The ‘synthetic’ galaxies were constructed using two different grids of high-resolution theoretical population synthesis models. The results of our controlled experiment show that our method can estimate with good speed and accuracy the parameters of the stellar populations that make up the galaxy even for very low S/N input. For a spectrum with S/N = 5 the typical average deviation between the input and fitted spectrum is less than 10−5. Additional improvements are achieved using prior knowledge.</description><subject>Astronomy</subject><subject>galaxies: fundamental parameters</subject><subject>galaxies: stellar content</subject><subject>methods: data analysis</subject><subject>methods: numerical</subject><subject>methods: statistical</subject><subject>Optimization algorithms</subject><subject>Signal to noise ratio</subject><subject>Stars & galaxies</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkUtv1DAUhS1EJYbCf7CQYJdgO34kCxZtVShqaREPCbGxbpwb6iHjDHYC03-P06mKxKre2LK_c3R9DiGUs5Ln9Xpd8kqrQjRal4IxVbJGKl3uHpHV_cNjsmKsUkVtOH9Cnqa0ZozJSugVuToKFNzkfyP1IU0QHBYtJOzoBty1D0gHhBh8-EE3OF2PHe3HSNOEwwCRbsftPMDkx5Cv5s5jekYOehgSPr_bD8nXt6dfTs6Ki6t370-OLgqnBNOFdo2opWwlk23ftgY5mloimJ6B5HVvDAjmJHRCcOe0ANkgctdIDZ3UwlWH5NXedxvHXzOmyW58cstUAcc5WVE3iilVPwBkmgvGM_jiP3A9zjHkT1jBTCV5U-sM1XvIxTGliL3dRr-BeGM5s0sfdm2X2O0Su136sLd92F2Wvrzzh-Rg6GPO2qd_esNVY2qTuTd77o8f8ObB_vbD5afllPXFXu9zS7t7PcSfVpvKKHv27bvVx8fm4-fsc179Bc7GrMI</recordid><startdate>20051021</startdate><enddate>20051021</enddate><creator>Solorio, Thamar</creator><creator>Fuentes, Olac</creator><creator>Terlevich, Roberto</creator><creator>Terlevich, Elena</creator><general>Blackwell Science Ltd</general><general>Blackwell Science</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7U5</scope></search><sort><creationdate>20051021</creationdate><title>An active instance-based machine learning method for stellar population studies</title><author>Solorio, Thamar ; Fuentes, Olac ; Terlevich, Roberto ; Terlevich, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5206-6c92844b404bfbb7e1e784ea7f0a418f77a20c4ad221cc62a49ee1c946ad462c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Astronomy</topic><topic>galaxies: fundamental parameters</topic><topic>galaxies: stellar content</topic><topic>methods: data analysis</topic><topic>methods: numerical</topic><topic>methods: statistical</topic><topic>Optimization algorithms</topic><topic>Signal to noise ratio</topic><topic>Stars & galaxies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solorio, Thamar</creatorcontrib><creatorcontrib>Fuentes, Olac</creatorcontrib><creatorcontrib>Terlevich, Roberto</creatorcontrib><creatorcontrib>Terlevich, Elena</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solorio, Thamar</au><au>Fuentes, Olac</au><au>Terlevich, Roberto</au><au>Terlevich, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An active instance-based machine learning method for stellar population studies</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><addtitle>Mon. Not. R. Astron. Soc</addtitle><date>2005-10-21</date><risdate>2005</risdate><volume>363</volume><issue>2</issue><spage>543</spage><epage>554</epage><pages>543-554</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><coden>MNRAA4</coden><abstract>We have developed a method for the determination of fast and accurate stellar population parameters in order to apply it to high-resolution galaxy spectra. The method is based on an optimization technique that combines active learning with an instance-based machine learning algorithm. We tested the method with the retrieval of the star formation history and dust content in ‘synthetic’ galaxies with a wide range of signal-to-noise ratios (S/N). The ‘synthetic’ galaxies were constructed using two different grids of high-resolution theoretical population synthesis models. The results of our controlled experiment show that our method can estimate with good speed and accuracy the parameters of the stellar populations that make up the galaxy even for very low S/N input. For a spectrum with S/N = 5 the typical average deviation between the input and fitted spectrum is less than 10−5. Additional improvements are achieved using prior knowledge.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><doi>10.1111/j.1365-2966.2005.09456.x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2005-10, Vol.363 (2), p.543-554 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_proquest_miscellaneous_28950558 |
source | EZB Free E-Journals; Oxford University Press Journals Open Access |
subjects | Astronomy galaxies: fundamental parameters galaxies: stellar content methods: data analysis methods: numerical methods: statistical Optimization algorithms Signal to noise ratio Stars & galaxies |
title | An active instance-based machine learning method for stellar population studies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A36%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20active%20instance-based%20machine%20learning%20method%20for%20stellar%20population%20studies&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Solorio,%20Thamar&rft.date=2005-10-21&rft.volume=363&rft.issue=2&rft.spage=543&rft.epage=554&rft.pages=543-554&rft.issn=0035-8711&rft.eissn=1365-2966&rft.coden=MNRAA4&rft_id=info:doi/10.1111/j.1365-2966.2005.09456.x&rft_dat=%3Cproquest_cross%3E926566651%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5206-6c92844b404bfbb7e1e784ea7f0a418f77a20c4ad221cc62a49ee1c946ad462c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=207341986&rft_id=info:pmid/&rfr_iscdi=true |