Loading…
Mapping the structure and depth of lava tubes using ground penetrating radar
The formation of lava tubes is one of the most significant factors controlling the emplacement of lava flows. However, extents and structures of lava tubes are typically not precisely known due to the difficulty in finding lava tubes in the field. We developed a new stepped‐frequency ground penetrat...
Saved in:
Published in: | Geophysical research letters 2005-11, Vol.32 (21), p.L21316.1-n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The formation of lava tubes is one of the most significant factors controlling the emplacement of lava flows. However, extents and structures of lava tubes are typically not precisely known due to the difficulty in finding lava tubes in the field. We developed a new stepped‐frequency ground penetrating radar (GPR) system with shielded antennas, which allows measurements that have both high spatial resolution and large penetration depth. We performed two types of measurements over an inactive lava flow and show that this method can easily detect the existence of a lava tube. Importantly, phase reversals of the reflection signals can help identify reflections from a lava tube. Using these reflection patterns, we estimate the vertical dimension and the depth of a lava tube at Fuji volcano, which are validated by survey measurements. The presented method may be the most practical way to map terrestrial and perhaps extraterrestrial lava tubes. |
---|---|
ISSN: | 0094-8276 1944-8007 |
DOI: | 10.1029/2005GL024159 |