Loading…
Reconstruction of exposure to methylene diphenyl-4,4'-diisocyanate (MDI) aerosol using computational fluid dynamics, physiologically based toxicokinetics and statistical modeling
This study employed computational fluid dynamics (CFD), physiologically based toxicokinetics (PBTK), and statistical modeling to reconstruct exposure to methylene diphenyl-4,4'-diisocyanate (MDI) aerosol. By utilizing a validated CFD model, human respiratory deposition of MDI aerosol in differe...
Saved in:
Published in: | Inhalation toxicology 2023-10, Vol.35 (11-12), p.285-299 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study employed computational fluid dynamics (CFD), physiologically based toxicokinetics (PBTK), and statistical modeling to reconstruct exposure to methylene diphenyl-4,4'-diisocyanate (MDI) aerosol. By utilizing a validated CFD model, human respiratory deposition of MDI aerosol in different workload conditions was investigated, while a PBTK model was calibrated using experimental rat data. Biomonitoring data and Markov Chain Monte Carlo (MCMC) simulation were utilized for exposure assessment.
Deposition fraction of MDI in the respiratory tract at the light, moderate, and heavy activity were 0.038, 0.079, and 0.153, respectively. Converged MCMC results as the posterior means and prior values were obtained for several PBTK model parameters. In our study, we calibrated a rat model to investigate the transport, absorption, and elimination of 4,4'-MDI
inhalation exposure. The calibration process successfully captured experimental data in the lungs, liver, blood, and kidneys, allowing for a reasonable representation of MDI distribution within the rat model. Our calibrated model also represents MDI dynamics in the bloodstream, facilitating the assessment of bioavailability. For human exposure, we validated the model for recent and long-term MDI exposure using data from relevant studies.
Our computational models provide reasonable insights into MDI exposure, contributing to informed risk assessment and the development of effective exposure reduction strategies. |
---|---|
ISSN: | 0895-8378 1091-7691 |
DOI: | 10.1080/08958378.2023.2285772 |