Loading…
Multiparameter self-optimizing systems using correlation techniques
A class of self-optimizing systems which continually alter their parameters to reduce a mean-square performance criterion is described. The change in each parameter is determined from an error gradient in parameter space computed by cross-correlation methods which are independent of signal spectra a...
Saved in:
Published in: | IEEE transactions on automatic control 1964-01, Vol.9 (1), p.31-38 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A class of self-optimizing systems which continually alter their parameters to reduce a mean-square performance criterion is described. The change in each parameter is determined from an error gradient in parameter space computed by cross-correlation methods which are independent of signal spectra and require no test signal or parameter perturbation. Applications of this technique to both open-loop and closed-loop systems are included and it is shown that a combination of such self-optimizing systems is a possible solution to the adaptive control problem. Computer simulation results are included to demonstrate the practicality of the proposed systems. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.1964.1105638 |