Loading…

Multi-Channel Engineering of 3D Printed Zincophilic Anodes for Ultrahigh-Capacity and Dendrite-Free Quasi-Solid-State Zinc-Ion Microbatteries

Zinc-ion microbatteries (ZIMBs) are regarded as one of most promising miniaturized energy storage candidates owing to their high safety, compatible device size, superior energy density, and cost efficiency. Nevertheless, the zinc dendrite growth during charging/discharging and the inflexible device...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2023-12, Vol.15 (49), p.57049-57058
Main Authors: Ma, Hui, Tian, Xiaocong, Wang, Teng, Hou, Shuen, Jin, Hongyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a307t-318e0384e980644f1be970cf7f97e25c6c5576e62c205ac5211918be3ebc6f853
cites cdi_FETCH-LOGICAL-a307t-318e0384e980644f1be970cf7f97e25c6c5576e62c205ac5211918be3ebc6f853
container_end_page 57058
container_issue 49
container_start_page 57049
container_title ACS applied materials & interfaces
container_volume 15
creator Ma, Hui
Tian, Xiaocong
Wang, Teng
Hou, Shuen
Jin, Hongyun
description Zinc-ion microbatteries (ZIMBs) are regarded as one of most promising miniaturized energy storage candidates owing to their high safety, compatible device size, superior energy density, and cost efficiency. Nevertheless, the zinc dendrite growth during charging/discharging and the inflexible device manufacturing approach seriously restrict practical applications of ZIMBs. Herein, we report a unique material extrusion 3D printing approach with reinforced zincophilic anodes for ultrahigh-capacity and dendrite-free quasi-solid-state ZIMBs. A 3D printed N-doped hollow carbon nanotube (3DP-NHC) multichannel host is rationally designed for desirable dendrite-free zinc anodes. Favorable structural metrics of 3DP-NHC hosts with abundant porous channels and high zincophilic active sites enhance the ion diffusion rate and facilitate uniform zinc deposition behavior. Rapid zinc-ion migration is predicted through molecular dynamics, and zinc dendrite growth is significantly suppressed with homogeneous zinc-ion deposition, as observed by in situ optical microscopy. 3D printed symmetric zinc cells exhibit an ultralow polarization potential, a glorious rate performance, and a stable charging/discharging process. Accordingly, 3D printed quasi-solid-state ZIMBs achieve an outstanding device capacity of 11.9 mA h cm–2 at 0.3 mA cm–2 and superior cycling stability. These results reveal a feasible approach to effectively restrain zinc dendrite growth and achieve high performance for state-of-the-art miniaturized energy storage devices.
doi_str_mv 10.1021/acsami.3c12799
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2896803866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2896803866</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-318e0384e980644f1be970cf7f97e25c6c5576e62c205ac5211918be3ebc6f853</originalsourceid><addsrcrecordid>eNp1UD1PwzAQjRBIlMLK7BEhudhO4iRjlVKo1ApQ6cISuc6lcZXaxXaG_gj-M4ZWbEz3dHofdy-KbikZUcLog5BO7NQolpRlRXEWDWiRJDhnKTv_w0lyGV05tyWEx4ykg-hr0Xde4bIVWkOHHvVGaQCr9AaZBsUT9Bqwhxp9KC3NvlWdkmisTQ0ONcaiVeetaNWmxaXYC6n8AQldowno2ioPeGoB0FsvnMJL06kaL73w8OuGZ0ajhZLWrIX3IRPcdXTRiM7BzWkOo9X08b18xvOXp1k5nmMRk8zjmOZA4jyBIic8SRq6hiIjssmaIgOWSi7TNOPAmQw_CpkySguaryGGteRNnsbD6O7ou7fmswfnq51yErpOaDC9q1he8DwkcB6ooyM13OmchabaW7UT9lBRUv30Xh17r069B8H9URD21db0VodP_iN_AxuohmE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2896803866</pqid></control><display><type>article</type><title>Multi-Channel Engineering of 3D Printed Zincophilic Anodes for Ultrahigh-Capacity and Dendrite-Free Quasi-Solid-State Zinc-Ion Microbatteries</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Ma, Hui ; Tian, Xiaocong ; Wang, Teng ; Hou, Shuen ; Jin, Hongyun</creator><creatorcontrib>Ma, Hui ; Tian, Xiaocong ; Wang, Teng ; Hou, Shuen ; Jin, Hongyun</creatorcontrib><description>Zinc-ion microbatteries (ZIMBs) are regarded as one of most promising miniaturized energy storage candidates owing to their high safety, compatible device size, superior energy density, and cost efficiency. Nevertheless, the zinc dendrite growth during charging/discharging and the inflexible device manufacturing approach seriously restrict practical applications of ZIMBs. Herein, we report a unique material extrusion 3D printing approach with reinforced zincophilic anodes for ultrahigh-capacity and dendrite-free quasi-solid-state ZIMBs. A 3D printed N-doped hollow carbon nanotube (3DP-NHC) multichannel host is rationally designed for desirable dendrite-free zinc anodes. Favorable structural metrics of 3DP-NHC hosts with abundant porous channels and high zincophilic active sites enhance the ion diffusion rate and facilitate uniform zinc deposition behavior. Rapid zinc-ion migration is predicted through molecular dynamics, and zinc dendrite growth is significantly suppressed with homogeneous zinc-ion deposition, as observed by in situ optical microscopy. 3D printed symmetric zinc cells exhibit an ultralow polarization potential, a glorious rate performance, and a stable charging/discharging process. Accordingly, 3D printed quasi-solid-state ZIMBs achieve an outstanding device capacity of 11.9 mA h cm–2 at 0.3 mA cm–2 and superior cycling stability. These results reveal a feasible approach to effectively restrain zinc dendrite growth and achieve high performance for state-of-the-art miniaturized energy storage devices.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c12799</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2023-12, Vol.15 (49), p.57049-57058</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a307t-318e0384e980644f1be970cf7f97e25c6c5576e62c205ac5211918be3ebc6f853</citedby><cites>FETCH-LOGICAL-a307t-318e0384e980644f1be970cf7f97e25c6c5576e62c205ac5211918be3ebc6f853</cites><orcidid>0000-0001-6774-0212 ; 0000-0003-4474-1460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Ma, Hui</creatorcontrib><creatorcontrib>Tian, Xiaocong</creatorcontrib><creatorcontrib>Wang, Teng</creatorcontrib><creatorcontrib>Hou, Shuen</creatorcontrib><creatorcontrib>Jin, Hongyun</creatorcontrib><title>Multi-Channel Engineering of 3D Printed Zincophilic Anodes for Ultrahigh-Capacity and Dendrite-Free Quasi-Solid-State Zinc-Ion Microbatteries</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Zinc-ion microbatteries (ZIMBs) are regarded as one of most promising miniaturized energy storage candidates owing to their high safety, compatible device size, superior energy density, and cost efficiency. Nevertheless, the zinc dendrite growth during charging/discharging and the inflexible device manufacturing approach seriously restrict practical applications of ZIMBs. Herein, we report a unique material extrusion 3D printing approach with reinforced zincophilic anodes for ultrahigh-capacity and dendrite-free quasi-solid-state ZIMBs. A 3D printed N-doped hollow carbon nanotube (3DP-NHC) multichannel host is rationally designed for desirable dendrite-free zinc anodes. Favorable structural metrics of 3DP-NHC hosts with abundant porous channels and high zincophilic active sites enhance the ion diffusion rate and facilitate uniform zinc deposition behavior. Rapid zinc-ion migration is predicted through molecular dynamics, and zinc dendrite growth is significantly suppressed with homogeneous zinc-ion deposition, as observed by in situ optical microscopy. 3D printed symmetric zinc cells exhibit an ultralow polarization potential, a glorious rate performance, and a stable charging/discharging process. Accordingly, 3D printed quasi-solid-state ZIMBs achieve an outstanding device capacity of 11.9 mA h cm–2 at 0.3 mA cm–2 and superior cycling stability. These results reveal a feasible approach to effectively restrain zinc dendrite growth and achieve high performance for state-of-the-art miniaturized energy storage devices.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UD1PwzAQjRBIlMLK7BEhudhO4iRjlVKo1ApQ6cISuc6lcZXaxXaG_gj-M4ZWbEz3dHofdy-KbikZUcLog5BO7NQolpRlRXEWDWiRJDhnKTv_w0lyGV05tyWEx4ykg-hr0Xde4bIVWkOHHvVGaQCr9AaZBsUT9Bqwhxp9KC3NvlWdkmisTQ0ONcaiVeetaNWmxaXYC6n8AQldowno2ioPeGoB0FsvnMJL06kaL73w8OuGZ0ajhZLWrIX3IRPcdXTRiM7BzWkOo9X08b18xvOXp1k5nmMRk8zjmOZA4jyBIic8SRq6hiIjssmaIgOWSi7TNOPAmQw_CpkySguaryGGteRNnsbD6O7ou7fmswfnq51yErpOaDC9q1he8DwkcB6ooyM13OmchabaW7UT9lBRUv30Xh17r069B8H9URD21db0VodP_iN_AxuohmE</recordid><startdate>20231202</startdate><enddate>20231202</enddate><creator>Ma, Hui</creator><creator>Tian, Xiaocong</creator><creator>Wang, Teng</creator><creator>Hou, Shuen</creator><creator>Jin, Hongyun</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6774-0212</orcidid><orcidid>https://orcid.org/0000-0003-4474-1460</orcidid></search><sort><creationdate>20231202</creationdate><title>Multi-Channel Engineering of 3D Printed Zincophilic Anodes for Ultrahigh-Capacity and Dendrite-Free Quasi-Solid-State Zinc-Ion Microbatteries</title><author>Ma, Hui ; Tian, Xiaocong ; Wang, Teng ; Hou, Shuen ; Jin, Hongyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-318e0384e980644f1be970cf7f97e25c6c5576e62c205ac5211918be3ebc6f853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Hui</creatorcontrib><creatorcontrib>Tian, Xiaocong</creatorcontrib><creatorcontrib>Wang, Teng</creatorcontrib><creatorcontrib>Hou, Shuen</creatorcontrib><creatorcontrib>Jin, Hongyun</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Hui</au><au>Tian, Xiaocong</au><au>Wang, Teng</au><au>Hou, Shuen</au><au>Jin, Hongyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Channel Engineering of 3D Printed Zincophilic Anodes for Ultrahigh-Capacity and Dendrite-Free Quasi-Solid-State Zinc-Ion Microbatteries</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-12-02</date><risdate>2023</risdate><volume>15</volume><issue>49</issue><spage>57049</spage><epage>57058</epage><pages>57049-57058</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Zinc-ion microbatteries (ZIMBs) are regarded as one of most promising miniaturized energy storage candidates owing to their high safety, compatible device size, superior energy density, and cost efficiency. Nevertheless, the zinc dendrite growth during charging/discharging and the inflexible device manufacturing approach seriously restrict practical applications of ZIMBs. Herein, we report a unique material extrusion 3D printing approach with reinforced zincophilic anodes for ultrahigh-capacity and dendrite-free quasi-solid-state ZIMBs. A 3D printed N-doped hollow carbon nanotube (3DP-NHC) multichannel host is rationally designed for desirable dendrite-free zinc anodes. Favorable structural metrics of 3DP-NHC hosts with abundant porous channels and high zincophilic active sites enhance the ion diffusion rate and facilitate uniform zinc deposition behavior. Rapid zinc-ion migration is predicted through molecular dynamics, and zinc dendrite growth is significantly suppressed with homogeneous zinc-ion deposition, as observed by in situ optical microscopy. 3D printed symmetric zinc cells exhibit an ultralow polarization potential, a glorious rate performance, and a stable charging/discharging process. Accordingly, 3D printed quasi-solid-state ZIMBs achieve an outstanding device capacity of 11.9 mA h cm–2 at 0.3 mA cm–2 and superior cycling stability. These results reveal a feasible approach to effectively restrain zinc dendrite growth and achieve high performance for state-of-the-art miniaturized energy storage devices.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.3c12799</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6774-0212</orcidid><orcidid>https://orcid.org/0000-0003-4474-1460</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-12, Vol.15 (49), p.57049-57058
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2896803866
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Energy, Environmental, and Catalysis Applications
title Multi-Channel Engineering of 3D Printed Zincophilic Anodes for Ultrahigh-Capacity and Dendrite-Free Quasi-Solid-State Zinc-Ion Microbatteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A32%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Channel%20Engineering%20of%203D%20Printed%20Zincophilic%20Anodes%20for%20Ultrahigh-Capacity%20and%20Dendrite-Free%20Quasi-Solid-State%20Zinc-Ion%20Microbatteries&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Ma,%20Hui&rft.date=2023-12-02&rft.volume=15&rft.issue=49&rft.spage=57049&rft.epage=57058&rft.pages=57049-57058&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c12799&rft_dat=%3Cproquest_cross%3E2896803866%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a307t-318e0384e980644f1be970cf7f97e25c6c5576e62c205ac5211918be3ebc6f853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2896803866&rft_id=info:pmid/&rfr_iscdi=true