Loading…
Heterojunction Engineering of Multinary Metal Sulfide‐Based Photocatalysts for Efficient Photocatalytic Hydrogen Evolution
Photocatalytic hydrogen evolution (PHE) via water splitting using semiconductor photocatalysts is an effective path to solve the current energy crisis and environmental pollution. Heterojunction photocatalysts, containing two or more semiconductors, exhibit better PHE rates than those with only one...
Saved in:
Published in: | Advanced materials (Weinheim) 2024-03, Vol.36 (11), p.e2305835-n/a |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3735-10aa1c57b670ba343c9a2ebf2da28220bca4f3ddc8589ca07ada44d7dc53f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3735-10aa1c57b670ba343c9a2ebf2da28220bca4f3ddc8589ca07ada44d7dc53f3 |
container_end_page | n/a |
container_issue | 11 |
container_start_page | e2305835 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Song, Yiming Zheng, Xinlong Yang, Yuqi Liu, Yuhao Li, Jing Wu, Daoxiong Liu, Weifeng Shen, Yijun Tian, Xinlong |
description | Photocatalytic hydrogen evolution (PHE) via water splitting using semiconductor photocatalysts is an effective path to solve the current energy crisis and environmental pollution. Heterojunction photocatalysts, containing two or more semiconductors, exhibit better PHE rates than those with only one semiconductor owing to the altered band alignment at the interface and stronger driving force for charge separation. Traditional binary metal sulfide (BMS)‐based heterojunction photocatalysts, such as CdS, MoS2, and PbS, demonstrate excellent PHE performance. However, the recently developed multinary metal sulfide (MMS)‐based photocatalysts possess favorable chemical stability, tunable band structure, and flexible element compositions, and have considerable potential to realize higher PHE rates than those of BMSs. In this review article, the mechanism of PHE is first elucidated and then various single and heterojunction MMS‐based photocatalysts and their charge transfer behaviors and PHE performances are systematically summarized. A perspective on potential future research directions in this field is concluded.
The construction of advanced semiconductor photocatalyst is of great significance for the realization of efficient photocatalytic hydrogen evolution (PHE) via water splitting. This review comprehensively summarizes the representative construction strategies of multinary‐metal‐sulfide‐based heterojunction photocatalysts in PHE application, which provides guidance for accelerate the development of solar‐to‐hydrogen and PHE via overall water splitting. |
doi_str_mv | 10.1002/adma.202305835 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2896808588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2896808588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3735-10aa1c57b670ba343c9a2ebf2da28220bca4f3ddc8589ca07ada44d7dc53f3</originalsourceid><addsrcrecordid>eNqFkT2PEzEQhi0E4sJBS4ks0dAkzNrrXbsMRyBIF4GA3vL6Izja2IftBUW64n4Cv5FfgqMcB6JBU0wxz7zz8SL0tIFFA0BeKrNXCwKEAuOU3UOzhpFm3oJg99EMBGVz0bX8DD3KeQcAooPuITqjHNoaYoau17bYFHdT0MXHgFdh64O1yYctjg5vprH4oNIBb2xRI_40jc4b-_PmxyuVrcEfvsQStaqlQy4Zu5jwyjmvvQ3l72LxGq8PJsWtrTO-xXE6TnuMHjg1ZvvkNp-jj29Wny_W88v3b99dLC_nmvb1ggaUajTrh66HQdGWaqGIHRwxinBCYNCqddQYzRkXWkGvjGpb0xvNqKPn6MVJ9CrFr5PNRe591nYcVbBxypJw0XGorbyiz_9Bd3FKoa4miWAd6zvK20otTpROMedknbxKfl9_JBuQR1Pk0RR5Z0pteHYrOw17a-7w3y5UQJyA7360h__IyeXrzfKP-C_QQpy9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956576384</pqid></control><display><type>article</type><title>Heterojunction Engineering of Multinary Metal Sulfide‐Based Photocatalysts for Efficient Photocatalytic Hydrogen Evolution</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Song, Yiming ; Zheng, Xinlong ; Yang, Yuqi ; Liu, Yuhao ; Li, Jing ; Wu, Daoxiong ; Liu, Weifeng ; Shen, Yijun ; Tian, Xinlong</creator><creatorcontrib>Song, Yiming ; Zheng, Xinlong ; Yang, Yuqi ; Liu, Yuhao ; Li, Jing ; Wu, Daoxiong ; Liu, Weifeng ; Shen, Yijun ; Tian, Xinlong</creatorcontrib><description>Photocatalytic hydrogen evolution (PHE) via water splitting using semiconductor photocatalysts is an effective path to solve the current energy crisis and environmental pollution. Heterojunction photocatalysts, containing two or more semiconductors, exhibit better PHE rates than those with only one semiconductor owing to the altered band alignment at the interface and stronger driving force for charge separation. Traditional binary metal sulfide (BMS)‐based heterojunction photocatalysts, such as CdS, MoS2, and PbS, demonstrate excellent PHE performance. However, the recently developed multinary metal sulfide (MMS)‐based photocatalysts possess favorable chemical stability, tunable band structure, and flexible element compositions, and have considerable potential to realize higher PHE rates than those of BMSs. In this review article, the mechanism of PHE is first elucidated and then various single and heterojunction MMS‐based photocatalysts and their charge transfer behaviors and PHE performances are systematically summarized. A perspective on potential future research directions in this field is concluded.
The construction of advanced semiconductor photocatalyst is of great significance for the realization of efficient photocatalytic hydrogen evolution (PHE) via water splitting. This review comprehensively summarizes the representative construction strategies of multinary‐metal‐sulfide‐based heterojunction photocatalysts in PHE application, which provides guidance for accelerate the development of solar‐to‐hydrogen and PHE via overall water splitting.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202305835</identifier><identifier>PMID: 38040409</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Charge transfer ; charge transfer behavior ; heterojunction ; Heterojunctions ; Hydrogen evolution ; multinary metal sulfides ; Photocatalysis ; Photocatalysts ; photocatalytic hydrogen evolution ; Structural stability ; Water splitting</subject><ispartof>Advanced materials (Weinheim), 2024-03, Vol.36 (11), p.e2305835-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3735-10aa1c57b670ba343c9a2ebf2da28220bca4f3ddc8589ca07ada44d7dc53f3</citedby><cites>FETCH-LOGICAL-c3735-10aa1c57b670ba343c9a2ebf2da28220bca4f3ddc8589ca07ada44d7dc53f3</cites><orcidid>0000-0001-8388-5198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38040409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Yiming</creatorcontrib><creatorcontrib>Zheng, Xinlong</creatorcontrib><creatorcontrib>Yang, Yuqi</creatorcontrib><creatorcontrib>Liu, Yuhao</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Wu, Daoxiong</creatorcontrib><creatorcontrib>Liu, Weifeng</creatorcontrib><creatorcontrib>Shen, Yijun</creatorcontrib><creatorcontrib>Tian, Xinlong</creatorcontrib><title>Heterojunction Engineering of Multinary Metal Sulfide‐Based Photocatalysts for Efficient Photocatalytic Hydrogen Evolution</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Photocatalytic hydrogen evolution (PHE) via water splitting using semiconductor photocatalysts is an effective path to solve the current energy crisis and environmental pollution. Heterojunction photocatalysts, containing two or more semiconductors, exhibit better PHE rates than those with only one semiconductor owing to the altered band alignment at the interface and stronger driving force for charge separation. Traditional binary metal sulfide (BMS)‐based heterojunction photocatalysts, such as CdS, MoS2, and PbS, demonstrate excellent PHE performance. However, the recently developed multinary metal sulfide (MMS)‐based photocatalysts possess favorable chemical stability, tunable band structure, and flexible element compositions, and have considerable potential to realize higher PHE rates than those of BMSs. In this review article, the mechanism of PHE is first elucidated and then various single and heterojunction MMS‐based photocatalysts and their charge transfer behaviors and PHE performances are systematically summarized. A perspective on potential future research directions in this field is concluded.
The construction of advanced semiconductor photocatalyst is of great significance for the realization of efficient photocatalytic hydrogen evolution (PHE) via water splitting. This review comprehensively summarizes the representative construction strategies of multinary‐metal‐sulfide‐based heterojunction photocatalysts in PHE application, which provides guidance for accelerate the development of solar‐to‐hydrogen and PHE via overall water splitting.</description><subject>Charge transfer</subject><subject>charge transfer behavior</subject><subject>heterojunction</subject><subject>Heterojunctions</subject><subject>Hydrogen evolution</subject><subject>multinary metal sulfides</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>photocatalytic hydrogen evolution</subject><subject>Structural stability</subject><subject>Water splitting</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkT2PEzEQhi0E4sJBS4ks0dAkzNrrXbsMRyBIF4GA3vL6Izja2IftBUW64n4Cv5FfgqMcB6JBU0wxz7zz8SL0tIFFA0BeKrNXCwKEAuOU3UOzhpFm3oJg99EMBGVz0bX8DD3KeQcAooPuITqjHNoaYoau17bYFHdT0MXHgFdh64O1yYctjg5vprH4oNIBb2xRI_40jc4b-_PmxyuVrcEfvsQStaqlQy4Zu5jwyjmvvQ3l72LxGq8PJsWtrTO-xXE6TnuMHjg1ZvvkNp-jj29Wny_W88v3b99dLC_nmvb1ggaUajTrh66HQdGWaqGIHRwxinBCYNCqddQYzRkXWkGvjGpb0xvNqKPn6MVJ9CrFr5PNRe591nYcVbBxypJw0XGorbyiz_9Bd3FKoa4miWAd6zvK20otTpROMedknbxKfl9_JBuQR1Pk0RR5Z0pteHYrOw17a-7w3y5UQJyA7360h__IyeXrzfKP-C_QQpy9</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Song, Yiming</creator><creator>Zheng, Xinlong</creator><creator>Yang, Yuqi</creator><creator>Liu, Yuhao</creator><creator>Li, Jing</creator><creator>Wu, Daoxiong</creator><creator>Liu, Weifeng</creator><creator>Shen, Yijun</creator><creator>Tian, Xinlong</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8388-5198</orcidid></search><sort><creationdate>20240301</creationdate><title>Heterojunction Engineering of Multinary Metal Sulfide‐Based Photocatalysts for Efficient Photocatalytic Hydrogen Evolution</title><author>Song, Yiming ; Zheng, Xinlong ; Yang, Yuqi ; Liu, Yuhao ; Li, Jing ; Wu, Daoxiong ; Liu, Weifeng ; Shen, Yijun ; Tian, Xinlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3735-10aa1c57b670ba343c9a2ebf2da28220bca4f3ddc8589ca07ada44d7dc53f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Charge transfer</topic><topic>charge transfer behavior</topic><topic>heterojunction</topic><topic>Heterojunctions</topic><topic>Hydrogen evolution</topic><topic>multinary metal sulfides</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>photocatalytic hydrogen evolution</topic><topic>Structural stability</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yiming</creatorcontrib><creatorcontrib>Zheng, Xinlong</creatorcontrib><creatorcontrib>Yang, Yuqi</creatorcontrib><creatorcontrib>Liu, Yuhao</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Wu, Daoxiong</creatorcontrib><creatorcontrib>Liu, Weifeng</creatorcontrib><creatorcontrib>Shen, Yijun</creatorcontrib><creatorcontrib>Tian, Xinlong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yiming</au><au>Zheng, Xinlong</au><au>Yang, Yuqi</au><au>Liu, Yuhao</au><au>Li, Jing</au><au>Wu, Daoxiong</au><au>Liu, Weifeng</au><au>Shen, Yijun</au><au>Tian, Xinlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterojunction Engineering of Multinary Metal Sulfide‐Based Photocatalysts for Efficient Photocatalytic Hydrogen Evolution</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>36</volume><issue>11</issue><spage>e2305835</spage><epage>n/a</epage><pages>e2305835-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Photocatalytic hydrogen evolution (PHE) via water splitting using semiconductor photocatalysts is an effective path to solve the current energy crisis and environmental pollution. Heterojunction photocatalysts, containing two or more semiconductors, exhibit better PHE rates than those with only one semiconductor owing to the altered band alignment at the interface and stronger driving force for charge separation. Traditional binary metal sulfide (BMS)‐based heterojunction photocatalysts, such as CdS, MoS2, and PbS, demonstrate excellent PHE performance. However, the recently developed multinary metal sulfide (MMS)‐based photocatalysts possess favorable chemical stability, tunable band structure, and flexible element compositions, and have considerable potential to realize higher PHE rates than those of BMSs. In this review article, the mechanism of PHE is first elucidated and then various single and heterojunction MMS‐based photocatalysts and their charge transfer behaviors and PHE performances are systematically summarized. A perspective on potential future research directions in this field is concluded.
The construction of advanced semiconductor photocatalyst is of great significance for the realization of efficient photocatalytic hydrogen evolution (PHE) via water splitting. This review comprehensively summarizes the representative construction strategies of multinary‐metal‐sulfide‐based heterojunction photocatalysts in PHE application, which provides guidance for accelerate the development of solar‐to‐hydrogen and PHE via overall water splitting.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38040409</pmid><doi>10.1002/adma.202305835</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0001-8388-5198</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-03, Vol.36 (11), p.e2305835-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2896808588 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Charge transfer charge transfer behavior heterojunction Heterojunctions Hydrogen evolution multinary metal sulfides Photocatalysis Photocatalysts photocatalytic hydrogen evolution Structural stability Water splitting |
title | Heterojunction Engineering of Multinary Metal Sulfide‐Based Photocatalysts for Efficient Photocatalytic Hydrogen Evolution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterojunction%20Engineering%20of%20Multinary%20Metal%20Sulfide%E2%80%90Based%20Photocatalysts%20for%20Efficient%20Photocatalytic%20Hydrogen%20Evolution&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Song,%20Yiming&rft.date=2024-03-01&rft.volume=36&rft.issue=11&rft.spage=e2305835&rft.epage=n/a&rft.pages=e2305835-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202305835&rft_dat=%3Cproquest_cross%3E2896808588%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3735-10aa1c57b670ba343c9a2ebf2da28220bca4f3ddc8589ca07ada44d7dc53f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2956576384&rft_id=info:pmid/38040409&rfr_iscdi=true |