Loading…

Heterojunction Engineering of Multinary Metal Sulfide‐Based Photocatalysts for Efficient Photocatalytic Hydrogen Evolution

Photocatalytic hydrogen evolution (PHE) via water splitting using semiconductor photocatalysts is an effective path to solve the current energy crisis and environmental pollution. Heterojunction photocatalysts, containing two or more semiconductors, exhibit better PHE rates than those with only one...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2024-03, Vol.36 (11), p.e2305835-n/a
Main Authors: Song, Yiming, Zheng, Xinlong, Yang, Yuqi, Liu, Yuhao, Li, Jing, Wu, Daoxiong, Liu, Weifeng, Shen, Yijun, Tian, Xinlong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3735-10aa1c57b670ba343c9a2ebf2da28220bca4f3ddc8589ca07ada44d7dc53f3
cites cdi_FETCH-LOGICAL-c3735-10aa1c57b670ba343c9a2ebf2da28220bca4f3ddc8589ca07ada44d7dc53f3
container_end_page n/a
container_issue 11
container_start_page e2305835
container_title Advanced materials (Weinheim)
container_volume 36
creator Song, Yiming
Zheng, Xinlong
Yang, Yuqi
Liu, Yuhao
Li, Jing
Wu, Daoxiong
Liu, Weifeng
Shen, Yijun
Tian, Xinlong
description Photocatalytic hydrogen evolution (PHE) via water splitting using semiconductor photocatalysts is an effective path to solve the current energy crisis and environmental pollution. Heterojunction photocatalysts, containing two or more semiconductors, exhibit better PHE rates than those with only one semiconductor owing to the altered band alignment at the interface and stronger driving force for charge separation. Traditional binary metal sulfide (BMS)‐based heterojunction photocatalysts, such as CdS, MoS2, and PbS, demonstrate excellent PHE performance. However, the recently developed multinary metal sulfide (MMS)‐based photocatalysts possess favorable chemical stability, tunable band structure, and flexible element compositions, and have considerable potential to realize higher PHE rates than those of BMSs. In this review article, the mechanism of PHE is first elucidated and then various single and heterojunction MMS‐based photocatalysts and their charge transfer behaviors and PHE performances are systematically summarized. A perspective on potential future research directions in this field is concluded. The construction of advanced semiconductor photocatalyst is of great significance for the realization of efficient photocatalytic hydrogen evolution (PHE) via water splitting. This review comprehensively summarizes the representative construction strategies of multinary‐metal‐sulfide‐based heterojunction photocatalysts in PHE application, which provides guidance for accelerate the development of solar‐to‐hydrogen and PHE via overall water splitting.
doi_str_mv 10.1002/adma.202305835
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2896808588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2896808588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3735-10aa1c57b670ba343c9a2ebf2da28220bca4f3ddc8589ca07ada44d7dc53f3</originalsourceid><addsrcrecordid>eNqFkT2PEzEQhi0E4sJBS4ks0dAkzNrrXbsMRyBIF4GA3vL6Izja2IftBUW64n4Cv5FfgqMcB6JBU0wxz7zz8SL0tIFFA0BeKrNXCwKEAuOU3UOzhpFm3oJg99EMBGVz0bX8DD3KeQcAooPuITqjHNoaYoau17bYFHdT0MXHgFdh64O1yYctjg5vprH4oNIBb2xRI_40jc4b-_PmxyuVrcEfvsQStaqlQy4Zu5jwyjmvvQ3l72LxGq8PJsWtrTO-xXE6TnuMHjg1ZvvkNp-jj29Wny_W88v3b99dLC_nmvb1ggaUajTrh66HQdGWaqGIHRwxinBCYNCqddQYzRkXWkGvjGpb0xvNqKPn6MVJ9CrFr5PNRe591nYcVbBxypJw0XGorbyiz_9Bd3FKoa4miWAd6zvK20otTpROMedknbxKfl9_JBuQR1Pk0RR5Z0pteHYrOw17a-7w3y5UQJyA7360h__IyeXrzfKP-C_QQpy9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956576384</pqid></control><display><type>article</type><title>Heterojunction Engineering of Multinary Metal Sulfide‐Based Photocatalysts for Efficient Photocatalytic Hydrogen Evolution</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Song, Yiming ; Zheng, Xinlong ; Yang, Yuqi ; Liu, Yuhao ; Li, Jing ; Wu, Daoxiong ; Liu, Weifeng ; Shen, Yijun ; Tian, Xinlong</creator><creatorcontrib>Song, Yiming ; Zheng, Xinlong ; Yang, Yuqi ; Liu, Yuhao ; Li, Jing ; Wu, Daoxiong ; Liu, Weifeng ; Shen, Yijun ; Tian, Xinlong</creatorcontrib><description>Photocatalytic hydrogen evolution (PHE) via water splitting using semiconductor photocatalysts is an effective path to solve the current energy crisis and environmental pollution. Heterojunction photocatalysts, containing two or more semiconductors, exhibit better PHE rates than those with only one semiconductor owing to the altered band alignment at the interface and stronger driving force for charge separation. Traditional binary metal sulfide (BMS)‐based heterojunction photocatalysts, such as CdS, MoS2, and PbS, demonstrate excellent PHE performance. However, the recently developed multinary metal sulfide (MMS)‐based photocatalysts possess favorable chemical stability, tunable band structure, and flexible element compositions, and have considerable potential to realize higher PHE rates than those of BMSs. In this review article, the mechanism of PHE is first elucidated and then various single and heterojunction MMS‐based photocatalysts and their charge transfer behaviors and PHE performances are systematically summarized. A perspective on potential future research directions in this field is concluded. The construction of advanced semiconductor photocatalyst is of great significance for the realization of efficient photocatalytic hydrogen evolution (PHE) via water splitting. This review comprehensively summarizes the representative construction strategies of multinary‐metal‐sulfide‐based heterojunction photocatalysts in PHE application, which provides guidance for accelerate the development of solar‐to‐hydrogen and PHE via overall water splitting.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202305835</identifier><identifier>PMID: 38040409</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Charge transfer ; charge transfer behavior ; heterojunction ; Heterojunctions ; Hydrogen evolution ; multinary metal sulfides ; Photocatalysis ; Photocatalysts ; photocatalytic hydrogen evolution ; Structural stability ; Water splitting</subject><ispartof>Advanced materials (Weinheim), 2024-03, Vol.36 (11), p.e2305835-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3735-10aa1c57b670ba343c9a2ebf2da28220bca4f3ddc8589ca07ada44d7dc53f3</citedby><cites>FETCH-LOGICAL-c3735-10aa1c57b670ba343c9a2ebf2da28220bca4f3ddc8589ca07ada44d7dc53f3</cites><orcidid>0000-0001-8388-5198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38040409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Yiming</creatorcontrib><creatorcontrib>Zheng, Xinlong</creatorcontrib><creatorcontrib>Yang, Yuqi</creatorcontrib><creatorcontrib>Liu, Yuhao</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Wu, Daoxiong</creatorcontrib><creatorcontrib>Liu, Weifeng</creatorcontrib><creatorcontrib>Shen, Yijun</creatorcontrib><creatorcontrib>Tian, Xinlong</creatorcontrib><title>Heterojunction Engineering of Multinary Metal Sulfide‐Based Photocatalysts for Efficient Photocatalytic Hydrogen Evolution</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Photocatalytic hydrogen evolution (PHE) via water splitting using semiconductor photocatalysts is an effective path to solve the current energy crisis and environmental pollution. Heterojunction photocatalysts, containing two or more semiconductors, exhibit better PHE rates than those with only one semiconductor owing to the altered band alignment at the interface and stronger driving force for charge separation. Traditional binary metal sulfide (BMS)‐based heterojunction photocatalysts, such as CdS, MoS2, and PbS, demonstrate excellent PHE performance. However, the recently developed multinary metal sulfide (MMS)‐based photocatalysts possess favorable chemical stability, tunable band structure, and flexible element compositions, and have considerable potential to realize higher PHE rates than those of BMSs. In this review article, the mechanism of PHE is first elucidated and then various single and heterojunction MMS‐based photocatalysts and their charge transfer behaviors and PHE performances are systematically summarized. A perspective on potential future research directions in this field is concluded. The construction of advanced semiconductor photocatalyst is of great significance for the realization of efficient photocatalytic hydrogen evolution (PHE) via water splitting. This review comprehensively summarizes the representative construction strategies of multinary‐metal‐sulfide‐based heterojunction photocatalysts in PHE application, which provides guidance for accelerate the development of solar‐to‐hydrogen and PHE via overall water splitting.</description><subject>Charge transfer</subject><subject>charge transfer behavior</subject><subject>heterojunction</subject><subject>Heterojunctions</subject><subject>Hydrogen evolution</subject><subject>multinary metal sulfides</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>photocatalytic hydrogen evolution</subject><subject>Structural stability</subject><subject>Water splitting</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkT2PEzEQhi0E4sJBS4ks0dAkzNrrXbsMRyBIF4GA3vL6Izja2IftBUW64n4Cv5FfgqMcB6JBU0wxz7zz8SL0tIFFA0BeKrNXCwKEAuOU3UOzhpFm3oJg99EMBGVz0bX8DD3KeQcAooPuITqjHNoaYoau17bYFHdT0MXHgFdh64O1yYctjg5vprH4oNIBb2xRI_40jc4b-_PmxyuVrcEfvsQStaqlQy4Zu5jwyjmvvQ3l72LxGq8PJsWtrTO-xXE6TnuMHjg1ZvvkNp-jj29Wny_W88v3b99dLC_nmvb1ggaUajTrh66HQdGWaqGIHRwxinBCYNCqddQYzRkXWkGvjGpb0xvNqKPn6MVJ9CrFr5PNRe591nYcVbBxypJw0XGorbyiz_9Bd3FKoa4miWAd6zvK20otTpROMedknbxKfl9_JBuQR1Pk0RR5Z0pteHYrOw17a-7w3y5UQJyA7360h__IyeXrzfKP-C_QQpy9</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Song, Yiming</creator><creator>Zheng, Xinlong</creator><creator>Yang, Yuqi</creator><creator>Liu, Yuhao</creator><creator>Li, Jing</creator><creator>Wu, Daoxiong</creator><creator>Liu, Weifeng</creator><creator>Shen, Yijun</creator><creator>Tian, Xinlong</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8388-5198</orcidid></search><sort><creationdate>20240301</creationdate><title>Heterojunction Engineering of Multinary Metal Sulfide‐Based Photocatalysts for Efficient Photocatalytic Hydrogen Evolution</title><author>Song, Yiming ; Zheng, Xinlong ; Yang, Yuqi ; Liu, Yuhao ; Li, Jing ; Wu, Daoxiong ; Liu, Weifeng ; Shen, Yijun ; Tian, Xinlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3735-10aa1c57b670ba343c9a2ebf2da28220bca4f3ddc8589ca07ada44d7dc53f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Charge transfer</topic><topic>charge transfer behavior</topic><topic>heterojunction</topic><topic>Heterojunctions</topic><topic>Hydrogen evolution</topic><topic>multinary metal sulfides</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>photocatalytic hydrogen evolution</topic><topic>Structural stability</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Yiming</creatorcontrib><creatorcontrib>Zheng, Xinlong</creatorcontrib><creatorcontrib>Yang, Yuqi</creatorcontrib><creatorcontrib>Liu, Yuhao</creatorcontrib><creatorcontrib>Li, Jing</creatorcontrib><creatorcontrib>Wu, Daoxiong</creatorcontrib><creatorcontrib>Liu, Weifeng</creatorcontrib><creatorcontrib>Shen, Yijun</creatorcontrib><creatorcontrib>Tian, Xinlong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Yiming</au><au>Zheng, Xinlong</au><au>Yang, Yuqi</au><au>Liu, Yuhao</au><au>Li, Jing</au><au>Wu, Daoxiong</au><au>Liu, Weifeng</au><au>Shen, Yijun</au><au>Tian, Xinlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterojunction Engineering of Multinary Metal Sulfide‐Based Photocatalysts for Efficient Photocatalytic Hydrogen Evolution</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>36</volume><issue>11</issue><spage>e2305835</spage><epage>n/a</epage><pages>e2305835-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Photocatalytic hydrogen evolution (PHE) via water splitting using semiconductor photocatalysts is an effective path to solve the current energy crisis and environmental pollution. Heterojunction photocatalysts, containing two or more semiconductors, exhibit better PHE rates than those with only one semiconductor owing to the altered band alignment at the interface and stronger driving force for charge separation. Traditional binary metal sulfide (BMS)‐based heterojunction photocatalysts, such as CdS, MoS2, and PbS, demonstrate excellent PHE performance. However, the recently developed multinary metal sulfide (MMS)‐based photocatalysts possess favorable chemical stability, tunable band structure, and flexible element compositions, and have considerable potential to realize higher PHE rates than those of BMSs. In this review article, the mechanism of PHE is first elucidated and then various single and heterojunction MMS‐based photocatalysts and their charge transfer behaviors and PHE performances are systematically summarized. A perspective on potential future research directions in this field is concluded. The construction of advanced semiconductor photocatalyst is of great significance for the realization of efficient photocatalytic hydrogen evolution (PHE) via water splitting. This review comprehensively summarizes the representative construction strategies of multinary‐metal‐sulfide‐based heterojunction photocatalysts in PHE application, which provides guidance for accelerate the development of solar‐to‐hydrogen and PHE via overall water splitting.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38040409</pmid><doi>10.1002/adma.202305835</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0001-8388-5198</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-03, Vol.36 (11), p.e2305835-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2896808588
source Wiley-Blackwell Read & Publish Collection
subjects Charge transfer
charge transfer behavior
heterojunction
Heterojunctions
Hydrogen evolution
multinary metal sulfides
Photocatalysis
Photocatalysts
photocatalytic hydrogen evolution
Structural stability
Water splitting
title Heterojunction Engineering of Multinary Metal Sulfide‐Based Photocatalysts for Efficient Photocatalytic Hydrogen Evolution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterojunction%20Engineering%20of%20Multinary%20Metal%20Sulfide%E2%80%90Based%20Photocatalysts%20for%20Efficient%20Photocatalytic%20Hydrogen%20Evolution&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Song,%20Yiming&rft.date=2024-03-01&rft.volume=36&rft.issue=11&rft.spage=e2305835&rft.epage=n/a&rft.pages=e2305835-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202305835&rft_dat=%3Cproquest_cross%3E2896808588%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3735-10aa1c57b670ba343c9a2ebf2da28220bca4f3ddc8589ca07ada44d7dc53f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2956576384&rft_id=info:pmid/38040409&rfr_iscdi=true