Loading…

Electron transfer and microbial mechanism of synergistic degradation of lignocellulose by hydrochar and aerobic fermentation

[Display omitted] In response to the problem of asynchronous fermentation between lignocellulose and perishable materials in compost, the combined technology of low-temperature hydrochar and compost has been studied. Hydrochar was prepared through low-temperature hydrothermal reactions and applied t...

Full description

Saved in:
Bibliographic Details
Published in:Bioresource technology 2024-02, Vol.394, p.129980-129980, Article 129980
Main Authors: Yu, Chengze, Li, Mingxiao, Huang, Haipeng, Yan, Jie, Zhang, Xiaolei, Luo, Tao, Ye, Meiying, Meng, Fanhua, Sun, Tiecheng, Hou, Jiaqi, Xi, Beidou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c315t-76d4cc73ba471fb84a471665f05c793f63c2f0d88d9918e1b8172f2612fb619f3
container_end_page 129980
container_issue
container_start_page 129980
container_title Bioresource technology
container_volume 394
creator Yu, Chengze
Li, Mingxiao
Huang, Haipeng
Yan, Jie
Zhang, Xiaolei
Luo, Tao
Ye, Meiying
Meng, Fanhua
Sun, Tiecheng
Hou, Jiaqi
Xi, Beidou
description [Display omitted] In response to the problem of asynchronous fermentation between lignocellulose and perishable materials in compost, the combined technology of low-temperature hydrochar and compost has been studied. Hydrochar was prepared through low-temperature hydrothermal reactions and applied to aerobic fermentation. The response relationship between lignocellulose content, electron transfer capability, and microbes was explored. The results showed that a pore structure with oxygen-containing functional groups was formed in hydrochar, promoting electron transfer during composting. With the rapid increase in composting temperature, the lignocellulose content decreased by 64.36 mg/g. Oceanobacillus, Cerasibacillus, Marinimicrobium, and Gracilibacillus promoted the degradation of lignocellulose and the carbon/nitrogen cycle during aerobic fermentation, and there was a significant response relationship between electron transfer capability and functional microbes. The combined application of hydrochar and aerobic fermentation accelerated the degradation of lignocellulose. This study provides technical support for the treatment of heterogeneous organic waste.
doi_str_mv 10.1016/j.biortech.2023.129980
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2896811092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852423014086</els_id><sourcerecordid>2896811092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-76d4cc73ba471fb84a471665f05c793f63c2f0d88d9918e1b8172f2612fb619f3</originalsourceid><addsrcrecordid>eNqFUU1P3DAQtSpQWWj_AvKxlyz-yDr2rRUCWgmJC5wtxx4vXiU2tbNIK_HjcQhw5TSHeR_z3iB0TsmaEioudus-pDyBfVwzwviaMqUk-YZWVHa8YaoTR2hFlCCN3LD2BJ2WsiOEcNqx7-iES9KylvMVerkawE45RTxlE4uHjE10eAw2pz6YAY_VwsRQRpw8LocIeRvKFCx2sM3GmSlUbl0NYRuThWHYD6kA7g_48eByquRF0cAsaHF1GCFOb7wf6NibocDP93mGHq6v7i__Nrd3N_8u_9w2ltPN1HTCtdZ2vDdtR30v23kKsfFkYzvFveCWeeKkdEpRCbSXNaVngjLfC6o8P0O_Ft2nnP7voUx6DGW-1URI-6KZVEJSShSrULFAa_5SMnj9lMNo8kFToufm9U5_NK_n5vXSfCWev3vs-xHcJ-2j6gr4vQCgJn0OkHWxAaIFF3J9gXYpfOXxCkRrmqU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2896811092</pqid></control><display><type>article</type><title>Electron transfer and microbial mechanism of synergistic degradation of lignocellulose by hydrochar and aerobic fermentation</title><source>ScienceDirect Journals</source><creator>Yu, Chengze ; Li, Mingxiao ; Huang, Haipeng ; Yan, Jie ; Zhang, Xiaolei ; Luo, Tao ; Ye, Meiying ; Meng, Fanhua ; Sun, Tiecheng ; Hou, Jiaqi ; Xi, Beidou</creator><creatorcontrib>Yu, Chengze ; Li, Mingxiao ; Huang, Haipeng ; Yan, Jie ; Zhang, Xiaolei ; Luo, Tao ; Ye, Meiying ; Meng, Fanhua ; Sun, Tiecheng ; Hou, Jiaqi ; Xi, Beidou</creatorcontrib><description>[Display omitted] In response to the problem of asynchronous fermentation between lignocellulose and perishable materials in compost, the combined technology of low-temperature hydrochar and compost has been studied. Hydrochar was prepared through low-temperature hydrothermal reactions and applied to aerobic fermentation. The response relationship between lignocellulose content, electron transfer capability, and microbes was explored. The results showed that a pore structure with oxygen-containing functional groups was formed in hydrochar, promoting electron transfer during composting. With the rapid increase in composting temperature, the lignocellulose content decreased by 64.36 mg/g. Oceanobacillus, Cerasibacillus, Marinimicrobium, and Gracilibacillus promoted the degradation of lignocellulose and the carbon/nitrogen cycle during aerobic fermentation, and there was a significant response relationship between electron transfer capability and functional microbes. The combined application of hydrochar and aerobic fermentation accelerated the degradation of lignocellulose. This study provides technical support for the treatment of heterogeneous organic waste.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2023.129980</identifier><identifier>PMID: 38042433</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Hydrochar production ; Lignocellulose pretreatment ; Microbial community ; Walnut husk degradation</subject><ispartof>Bioresource technology, 2024-02, Vol.394, p.129980-129980, Article 129980</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-76d4cc73ba471fb84a471665f05c793f63c2f0d88d9918e1b8172f2612fb619f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38042433$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Chengze</creatorcontrib><creatorcontrib>Li, Mingxiao</creatorcontrib><creatorcontrib>Huang, Haipeng</creatorcontrib><creatorcontrib>Yan, Jie</creatorcontrib><creatorcontrib>Zhang, Xiaolei</creatorcontrib><creatorcontrib>Luo, Tao</creatorcontrib><creatorcontrib>Ye, Meiying</creatorcontrib><creatorcontrib>Meng, Fanhua</creatorcontrib><creatorcontrib>Sun, Tiecheng</creatorcontrib><creatorcontrib>Hou, Jiaqi</creatorcontrib><creatorcontrib>Xi, Beidou</creatorcontrib><title>Electron transfer and microbial mechanism of synergistic degradation of lignocellulose by hydrochar and aerobic fermentation</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>[Display omitted] In response to the problem of asynchronous fermentation between lignocellulose and perishable materials in compost, the combined technology of low-temperature hydrochar and compost has been studied. Hydrochar was prepared through low-temperature hydrothermal reactions and applied to aerobic fermentation. The response relationship between lignocellulose content, electron transfer capability, and microbes was explored. The results showed that a pore structure with oxygen-containing functional groups was formed in hydrochar, promoting electron transfer during composting. With the rapid increase in composting temperature, the lignocellulose content decreased by 64.36 mg/g. Oceanobacillus, Cerasibacillus, Marinimicrobium, and Gracilibacillus promoted the degradation of lignocellulose and the carbon/nitrogen cycle during aerobic fermentation, and there was a significant response relationship between electron transfer capability and functional microbes. The combined application of hydrochar and aerobic fermentation accelerated the degradation of lignocellulose. This study provides technical support for the treatment of heterogeneous organic waste.</description><subject>Hydrochar production</subject><subject>Lignocellulose pretreatment</subject><subject>Microbial community</subject><subject>Walnut husk degradation</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUU1P3DAQtSpQWWj_AvKxlyz-yDr2rRUCWgmJC5wtxx4vXiU2tbNIK_HjcQhw5TSHeR_z3iB0TsmaEioudus-pDyBfVwzwviaMqUk-YZWVHa8YaoTR2hFlCCN3LD2BJ2WsiOEcNqx7-iES9KylvMVerkawE45RTxlE4uHjE10eAw2pz6YAY_VwsRQRpw8LocIeRvKFCx2sM3GmSlUbl0NYRuThWHYD6kA7g_48eByquRF0cAsaHF1GCFOb7wf6NibocDP93mGHq6v7i__Nrd3N_8u_9w2ltPN1HTCtdZ2vDdtR30v23kKsfFkYzvFveCWeeKkdEpRCbSXNaVngjLfC6o8P0O_Ft2nnP7voUx6DGW-1URI-6KZVEJSShSrULFAa_5SMnj9lMNo8kFToufm9U5_NK_n5vXSfCWev3vs-xHcJ-2j6gr4vQCgJn0OkHWxAaIFF3J9gXYpfOXxCkRrmqU</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Yu, Chengze</creator><creator>Li, Mingxiao</creator><creator>Huang, Haipeng</creator><creator>Yan, Jie</creator><creator>Zhang, Xiaolei</creator><creator>Luo, Tao</creator><creator>Ye, Meiying</creator><creator>Meng, Fanhua</creator><creator>Sun, Tiecheng</creator><creator>Hou, Jiaqi</creator><creator>Xi, Beidou</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202402</creationdate><title>Electron transfer and microbial mechanism of synergistic degradation of lignocellulose by hydrochar and aerobic fermentation</title><author>Yu, Chengze ; Li, Mingxiao ; Huang, Haipeng ; Yan, Jie ; Zhang, Xiaolei ; Luo, Tao ; Ye, Meiying ; Meng, Fanhua ; Sun, Tiecheng ; Hou, Jiaqi ; Xi, Beidou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-76d4cc73ba471fb84a471665f05c793f63c2f0d88d9918e1b8172f2612fb619f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Hydrochar production</topic><topic>Lignocellulose pretreatment</topic><topic>Microbial community</topic><topic>Walnut husk degradation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Chengze</creatorcontrib><creatorcontrib>Li, Mingxiao</creatorcontrib><creatorcontrib>Huang, Haipeng</creatorcontrib><creatorcontrib>Yan, Jie</creatorcontrib><creatorcontrib>Zhang, Xiaolei</creatorcontrib><creatorcontrib>Luo, Tao</creatorcontrib><creatorcontrib>Ye, Meiying</creatorcontrib><creatorcontrib>Meng, Fanhua</creatorcontrib><creatorcontrib>Sun, Tiecheng</creatorcontrib><creatorcontrib>Hou, Jiaqi</creatorcontrib><creatorcontrib>Xi, Beidou</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Chengze</au><au>Li, Mingxiao</au><au>Huang, Haipeng</au><au>Yan, Jie</au><au>Zhang, Xiaolei</au><au>Luo, Tao</au><au>Ye, Meiying</au><au>Meng, Fanhua</au><au>Sun, Tiecheng</au><au>Hou, Jiaqi</au><au>Xi, Beidou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron transfer and microbial mechanism of synergistic degradation of lignocellulose by hydrochar and aerobic fermentation</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2024-02</date><risdate>2024</risdate><volume>394</volume><spage>129980</spage><epage>129980</epage><pages>129980-129980</pages><artnum>129980</artnum><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>[Display omitted] In response to the problem of asynchronous fermentation between lignocellulose and perishable materials in compost, the combined technology of low-temperature hydrochar and compost has been studied. Hydrochar was prepared through low-temperature hydrothermal reactions and applied to aerobic fermentation. The response relationship between lignocellulose content, electron transfer capability, and microbes was explored. The results showed that a pore structure with oxygen-containing functional groups was formed in hydrochar, promoting electron transfer during composting. With the rapid increase in composting temperature, the lignocellulose content decreased by 64.36 mg/g. Oceanobacillus, Cerasibacillus, Marinimicrobium, and Gracilibacillus promoted the degradation of lignocellulose and the carbon/nitrogen cycle during aerobic fermentation, and there was a significant response relationship between electron transfer capability and functional microbes. The combined application of hydrochar and aerobic fermentation accelerated the degradation of lignocellulose. This study provides technical support for the treatment of heterogeneous organic waste.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38042433</pmid><doi>10.1016/j.biortech.2023.129980</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2024-02, Vol.394, p.129980-129980, Article 129980
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_2896811092
source ScienceDirect Journals
subjects Hydrochar production
Lignocellulose pretreatment
Microbial community
Walnut husk degradation
title Electron transfer and microbial mechanism of synergistic degradation of lignocellulose by hydrochar and aerobic fermentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A43%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20transfer%20and%20microbial%20mechanism%20of%20synergistic%20degradation%20of%20lignocellulose%20by%20hydrochar%20and%20aerobic%20fermentation&rft.jtitle=Bioresource%20technology&rft.au=Yu,%20Chengze&rft.date=2024-02&rft.volume=394&rft.spage=129980&rft.epage=129980&rft.pages=129980-129980&rft.artnum=129980&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2023.129980&rft_dat=%3Cproquest_cross%3E2896811092%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-76d4cc73ba471fb84a471665f05c793f63c2f0d88d9918e1b8172f2612fb619f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2896811092&rft_id=info:pmid/38042433&rfr_iscdi=true