Loading…

Crystal-Phase Engineering in Heterogeneous Catalysis

The performance of a chemical reaction is critically dependent on the electronic and/or geometric structures of a material in heterogeneous catalysis. Over the past century, the Sabatier principle has already provided a conceptual framework for optimal catalyst design by adjusting the electronic str...

Full description

Saved in:
Bibliographic Details
Published in:Chemical reviews 2024-01, Vol.124 (1), p.164-209
Main Authors: Zhao, Jian-Wen, Wang, Hong-Yue, Feng, Li, Zhu, Jin-Ze, Liu, Jin-Xun, Li, Wei-Xue
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a373t-b30a91822447747085d439c2b509ae7e1753aab2f03aeab1b32e2a1c8273fc3e3
cites cdi_FETCH-LOGICAL-a373t-b30a91822447747085d439c2b509ae7e1753aab2f03aeab1b32e2a1c8273fc3e3
container_end_page 209
container_issue 1
container_start_page 164
container_title Chemical reviews
container_volume 124
creator Zhao, Jian-Wen
Wang, Hong-Yue
Feng, Li
Zhu, Jin-Ze
Liu, Jin-Xun
Li, Wei-Xue
description The performance of a chemical reaction is critically dependent on the electronic and/or geometric structures of a material in heterogeneous catalysis. Over the past century, the Sabatier principle has already provided a conceptual framework for optimal catalyst design by adjusting the electronic structure of the catalytic material via a change in composition. Beyond composition, it is essential to recognize that the geometric atomic structures of a catalyst, encompassing terraces, edges, steps, kinks, and corners, have a substantial impact on the activity and selectivity of a chemical reaction. Crystal-phase engineering has the capacity to bring about substantial alterations in the electronic and geometric configurations of a catalyst, enabling control over coordination numbers, morphological features, and the arrangement of surface atoms. Modulating the crystallographic phase is therefore an important strategy for improving the stability, activity, and selectivity of catalytic materials. Nonetheless, a complete understanding of how the performance depends on the crystal phase of a catalyst remains elusive, primarily due to the absence of a molecular-level view of active sites across various crystal phases. In this review, we primarily focus on assessing the dependence of catalytic performance on crystal phases to elucidate the challenges and complexities inherent in heterogeneous catalysis, ultimately aiming for improved catalyst design.
doi_str_mv 10.1021/acs.chemrev.3c00402
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2897487782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913488724</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-b30a91822447747085d439c2b509ae7e1753aab2f03aeab1b32e2a1c8273fc3e3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRbK3-AkECXryknf3qbo4SqhUKetDzskknbUo-6m4j9N-7tbEHD56Gged9Z3gIuaUwpsDoxOZ-nK-xdvg15jmAAHZGhlQyiKc6gXMyBIAkZtOpHJAr7zdhlZKpSzLgGoSQGoZEpG7vd7aK39bWYzRrVmWD6MpmFZVNNMcdunaFDbadj1IbwL0v_TW5KGzl8aafI_LxNHtP5_Hi9fklfVzEliu-izMONqGaMSGUEgq0XAqe5CyTkFhUSJXk1masAG7RZjTjDJmluWaKFzlHPiIPx96taz879DtTlz7HqrI_DxmmEyW0UpoF9P4Pumk714TvDEsoF1orJgLFj1TuWu8dFmbrytq6vaFgDlJNkGp6qaaXGlJ3fXeX1bg8ZX4tBmByBA7p093_Kr8BTdyDvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913488724</pqid></control><display><type>article</type><title>Crystal-Phase Engineering in Heterogeneous Catalysis</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zhao, Jian-Wen ; Wang, Hong-Yue ; Feng, Li ; Zhu, Jin-Ze ; Liu, Jin-Xun ; Li, Wei-Xue</creator><creatorcontrib>Zhao, Jian-Wen ; Wang, Hong-Yue ; Feng, Li ; Zhu, Jin-Ze ; Liu, Jin-Xun ; Li, Wei-Xue</creatorcontrib><description>The performance of a chemical reaction is critically dependent on the electronic and/or geometric structures of a material in heterogeneous catalysis. Over the past century, the Sabatier principle has already provided a conceptual framework for optimal catalyst design by adjusting the electronic structure of the catalytic material via a change in composition. Beyond composition, it is essential to recognize that the geometric atomic structures of a catalyst, encompassing terraces, edges, steps, kinks, and corners, have a substantial impact on the activity and selectivity of a chemical reaction. Crystal-phase engineering has the capacity to bring about substantial alterations in the electronic and geometric configurations of a catalyst, enabling control over coordination numbers, morphological features, and the arrangement of surface atoms. Modulating the crystallographic phase is therefore an important strategy for improving the stability, activity, and selectivity of catalytic materials. Nonetheless, a complete understanding of how the performance depends on the crystal phase of a catalyst remains elusive, primarily due to the absence of a molecular-level view of active sites across various crystal phases. In this review, we primarily focus on assessing the dependence of catalytic performance on crystal phases to elucidate the challenges and complexities inherent in heterogeneous catalysis, ultimately aiming for improved catalyst design.</description><identifier>ISSN: 0009-2665</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.3c00402</identifier><identifier>PMID: 38044580</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalysis ; Catalysts ; Chemical reactions ; Composition ; Coordination numbers ; Crystallography ; Crystals ; Electronic structure</subject><ispartof>Chemical reviews, 2024-01, Vol.124 (1), p.164-209</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Jan 10, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a373t-b30a91822447747085d439c2b509ae7e1753aab2f03aeab1b32e2a1c8273fc3e3</citedby><cites>FETCH-LOGICAL-a373t-b30a91822447747085d439c2b509ae7e1753aab2f03aeab1b32e2a1c8273fc3e3</cites><orcidid>0000-0002-7499-4197 ; 0000-0002-5043-3088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38044580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Jian-Wen</creatorcontrib><creatorcontrib>Wang, Hong-Yue</creatorcontrib><creatorcontrib>Feng, Li</creatorcontrib><creatorcontrib>Zhu, Jin-Ze</creatorcontrib><creatorcontrib>Liu, Jin-Xun</creatorcontrib><creatorcontrib>Li, Wei-Xue</creatorcontrib><title>Crystal-Phase Engineering in Heterogeneous Catalysis</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>The performance of a chemical reaction is critically dependent on the electronic and/or geometric structures of a material in heterogeneous catalysis. Over the past century, the Sabatier principle has already provided a conceptual framework for optimal catalyst design by adjusting the electronic structure of the catalytic material via a change in composition. Beyond composition, it is essential to recognize that the geometric atomic structures of a catalyst, encompassing terraces, edges, steps, kinks, and corners, have a substantial impact on the activity and selectivity of a chemical reaction. Crystal-phase engineering has the capacity to bring about substantial alterations in the electronic and geometric configurations of a catalyst, enabling control over coordination numbers, morphological features, and the arrangement of surface atoms. Modulating the crystallographic phase is therefore an important strategy for improving the stability, activity, and selectivity of catalytic materials. Nonetheless, a complete understanding of how the performance depends on the crystal phase of a catalyst remains elusive, primarily due to the absence of a molecular-level view of active sites across various crystal phases. In this review, we primarily focus on assessing the dependence of catalytic performance on crystal phases to elucidate the challenges and complexities inherent in heterogeneous catalysis, ultimately aiming for improved catalyst design.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Composition</subject><subject>Coordination numbers</subject><subject>Crystallography</subject><subject>Crystals</subject><subject>Electronic structure</subject><issn>0009-2665</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRbK3-AkECXryknf3qbo4SqhUKetDzskknbUo-6m4j9N-7tbEHD56Gged9Z3gIuaUwpsDoxOZ-nK-xdvg15jmAAHZGhlQyiKc6gXMyBIAkZtOpHJAr7zdhlZKpSzLgGoSQGoZEpG7vd7aK39bWYzRrVmWD6MpmFZVNNMcdunaFDbadj1IbwL0v_TW5KGzl8aafI_LxNHtP5_Hi9fklfVzEliu-izMONqGaMSGUEgq0XAqe5CyTkFhUSJXk1masAG7RZjTjDJmluWaKFzlHPiIPx96taz879DtTlz7HqrI_DxmmEyW0UpoF9P4Pumk714TvDEsoF1orJgLFj1TuWu8dFmbrytq6vaFgDlJNkGp6qaaXGlJ3fXeX1bg8ZX4tBmByBA7p093_Kr8BTdyDvg</recordid><startdate>20240110</startdate><enddate>20240110</enddate><creator>Zhao, Jian-Wen</creator><creator>Wang, Hong-Yue</creator><creator>Feng, Li</creator><creator>Zhu, Jin-Ze</creator><creator>Liu, Jin-Xun</creator><creator>Li, Wei-Xue</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7499-4197</orcidid><orcidid>https://orcid.org/0000-0002-5043-3088</orcidid></search><sort><creationdate>20240110</creationdate><title>Crystal-Phase Engineering in Heterogeneous Catalysis</title><author>Zhao, Jian-Wen ; Wang, Hong-Yue ; Feng, Li ; Zhu, Jin-Ze ; Liu, Jin-Xun ; Li, Wei-Xue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-b30a91822447747085d439c2b509ae7e1753aab2f03aeab1b32e2a1c8273fc3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Composition</topic><topic>Coordination numbers</topic><topic>Crystallography</topic><topic>Crystals</topic><topic>Electronic structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jian-Wen</creatorcontrib><creatorcontrib>Wang, Hong-Yue</creatorcontrib><creatorcontrib>Feng, Li</creatorcontrib><creatorcontrib>Zhu, Jin-Ze</creatorcontrib><creatorcontrib>Liu, Jin-Xun</creatorcontrib><creatorcontrib>Li, Wei-Xue</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Jian-Wen</au><au>Wang, Hong-Yue</au><au>Feng, Li</au><au>Zhu, Jin-Ze</au><au>Liu, Jin-Xun</au><au>Li, Wei-Xue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal-Phase Engineering in Heterogeneous Catalysis</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2024-01-10</date><risdate>2024</risdate><volume>124</volume><issue>1</issue><spage>164</spage><epage>209</epage><pages>164-209</pages><issn>0009-2665</issn><eissn>1520-6890</eissn><abstract>The performance of a chemical reaction is critically dependent on the electronic and/or geometric structures of a material in heterogeneous catalysis. Over the past century, the Sabatier principle has already provided a conceptual framework for optimal catalyst design by adjusting the electronic structure of the catalytic material via a change in composition. Beyond composition, it is essential to recognize that the geometric atomic structures of a catalyst, encompassing terraces, edges, steps, kinks, and corners, have a substantial impact on the activity and selectivity of a chemical reaction. Crystal-phase engineering has the capacity to bring about substantial alterations in the electronic and geometric configurations of a catalyst, enabling control over coordination numbers, morphological features, and the arrangement of surface atoms. Modulating the crystallographic phase is therefore an important strategy for improving the stability, activity, and selectivity of catalytic materials. Nonetheless, a complete understanding of how the performance depends on the crystal phase of a catalyst remains elusive, primarily due to the absence of a molecular-level view of active sites across various crystal phases. In this review, we primarily focus on assessing the dependence of catalytic performance on crystal phases to elucidate the challenges and complexities inherent in heterogeneous catalysis, ultimately aiming for improved catalyst design.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38044580</pmid><doi>10.1021/acs.chemrev.3c00402</doi><tpages>46</tpages><orcidid>https://orcid.org/0000-0002-7499-4197</orcidid><orcidid>https://orcid.org/0000-0002-5043-3088</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0009-2665
ispartof Chemical reviews, 2024-01, Vol.124 (1), p.164-209
issn 0009-2665
1520-6890
language eng
recordid cdi_proquest_miscellaneous_2897487782
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Catalysis
Catalysts
Chemical reactions
Composition
Coordination numbers
Crystallography
Crystals
Electronic structure
title Crystal-Phase Engineering in Heterogeneous Catalysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal-Phase%20Engineering%20in%20Heterogeneous%20Catalysis&rft.jtitle=Chemical%20reviews&rft.au=Zhao,%20Jian-Wen&rft.date=2024-01-10&rft.volume=124&rft.issue=1&rft.spage=164&rft.epage=209&rft.pages=164-209&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.3c00402&rft_dat=%3Cproquest_cross%3E2913488724%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a373t-b30a91822447747085d439c2b509ae7e1753aab2f03aeab1b32e2a1c8273fc3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2913488724&rft_id=info:pmid/38044580&rfr_iscdi=true