Loading…
Crystal-Phase Engineering in Heterogeneous Catalysis
The performance of a chemical reaction is critically dependent on the electronic and/or geometric structures of a material in heterogeneous catalysis. Over the past century, the Sabatier principle has already provided a conceptual framework for optimal catalyst design by adjusting the electronic str...
Saved in:
Published in: | Chemical reviews 2024-01, Vol.124 (1), p.164-209 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a373t-b30a91822447747085d439c2b509ae7e1753aab2f03aeab1b32e2a1c8273fc3e3 |
---|---|
cites | cdi_FETCH-LOGICAL-a373t-b30a91822447747085d439c2b509ae7e1753aab2f03aeab1b32e2a1c8273fc3e3 |
container_end_page | 209 |
container_issue | 1 |
container_start_page | 164 |
container_title | Chemical reviews |
container_volume | 124 |
creator | Zhao, Jian-Wen Wang, Hong-Yue Feng, Li Zhu, Jin-Ze Liu, Jin-Xun Li, Wei-Xue |
description | The performance of a chemical reaction is critically dependent on the electronic and/or geometric structures of a material in heterogeneous catalysis. Over the past century, the Sabatier principle has already provided a conceptual framework for optimal catalyst design by adjusting the electronic structure of the catalytic material via a change in composition. Beyond composition, it is essential to recognize that the geometric atomic structures of a catalyst, encompassing terraces, edges, steps, kinks, and corners, have a substantial impact on the activity and selectivity of a chemical reaction. Crystal-phase engineering has the capacity to bring about substantial alterations in the electronic and geometric configurations of a catalyst, enabling control over coordination numbers, morphological features, and the arrangement of surface atoms. Modulating the crystallographic phase is therefore an important strategy for improving the stability, activity, and selectivity of catalytic materials. Nonetheless, a complete understanding of how the performance depends on the crystal phase of a catalyst remains elusive, primarily due to the absence of a molecular-level view of active sites across various crystal phases. In this review, we primarily focus on assessing the dependence of catalytic performance on crystal phases to elucidate the challenges and complexities inherent in heterogeneous catalysis, ultimately aiming for improved catalyst design. |
doi_str_mv | 10.1021/acs.chemrev.3c00402 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2897487782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913488724</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-b30a91822447747085d439c2b509ae7e1753aab2f03aeab1b32e2a1c8273fc3e3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRbK3-AkECXryknf3qbo4SqhUKetDzskknbUo-6m4j9N-7tbEHD56Gged9Z3gIuaUwpsDoxOZ-nK-xdvg15jmAAHZGhlQyiKc6gXMyBIAkZtOpHJAr7zdhlZKpSzLgGoSQGoZEpG7vd7aK39bWYzRrVmWD6MpmFZVNNMcdunaFDbadj1IbwL0v_TW5KGzl8aafI_LxNHtP5_Hi9fklfVzEliu-izMONqGaMSGUEgq0XAqe5CyTkFhUSJXk1masAG7RZjTjDJmluWaKFzlHPiIPx96taz879DtTlz7HqrI_DxmmEyW0UpoF9P4Pumk714TvDEsoF1orJgLFj1TuWu8dFmbrytq6vaFgDlJNkGp6qaaXGlJ3fXeX1bg8ZX4tBmByBA7p093_Kr8BTdyDvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913488724</pqid></control><display><type>article</type><title>Crystal-Phase Engineering in Heterogeneous Catalysis</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Zhao, Jian-Wen ; Wang, Hong-Yue ; Feng, Li ; Zhu, Jin-Ze ; Liu, Jin-Xun ; Li, Wei-Xue</creator><creatorcontrib>Zhao, Jian-Wen ; Wang, Hong-Yue ; Feng, Li ; Zhu, Jin-Ze ; Liu, Jin-Xun ; Li, Wei-Xue</creatorcontrib><description>The performance of a chemical reaction is critically dependent on the electronic and/or geometric structures of a material in heterogeneous catalysis. Over the past century, the Sabatier principle has already provided a conceptual framework for optimal catalyst design by adjusting the electronic structure of the catalytic material via a change in composition. Beyond composition, it is essential to recognize that the geometric atomic structures of a catalyst, encompassing terraces, edges, steps, kinks, and corners, have a substantial impact on the activity and selectivity of a chemical reaction. Crystal-phase engineering has the capacity to bring about substantial alterations in the electronic and geometric configurations of a catalyst, enabling control over coordination numbers, morphological features, and the arrangement of surface atoms. Modulating the crystallographic phase is therefore an important strategy for improving the stability, activity, and selectivity of catalytic materials. Nonetheless, a complete understanding of how the performance depends on the crystal phase of a catalyst remains elusive, primarily due to the absence of a molecular-level view of active sites across various crystal phases. In this review, we primarily focus on assessing the dependence of catalytic performance on crystal phases to elucidate the challenges and complexities inherent in heterogeneous catalysis, ultimately aiming for improved catalyst design.</description><identifier>ISSN: 0009-2665</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.3c00402</identifier><identifier>PMID: 38044580</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalysis ; Catalysts ; Chemical reactions ; Composition ; Coordination numbers ; Crystallography ; Crystals ; Electronic structure</subject><ispartof>Chemical reviews, 2024-01, Vol.124 (1), p.164-209</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Jan 10, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a373t-b30a91822447747085d439c2b509ae7e1753aab2f03aeab1b32e2a1c8273fc3e3</citedby><cites>FETCH-LOGICAL-a373t-b30a91822447747085d439c2b509ae7e1753aab2f03aeab1b32e2a1c8273fc3e3</cites><orcidid>0000-0002-7499-4197 ; 0000-0002-5043-3088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38044580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Jian-Wen</creatorcontrib><creatorcontrib>Wang, Hong-Yue</creatorcontrib><creatorcontrib>Feng, Li</creatorcontrib><creatorcontrib>Zhu, Jin-Ze</creatorcontrib><creatorcontrib>Liu, Jin-Xun</creatorcontrib><creatorcontrib>Li, Wei-Xue</creatorcontrib><title>Crystal-Phase Engineering in Heterogeneous Catalysis</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>The performance of a chemical reaction is critically dependent on the electronic and/or geometric structures of a material in heterogeneous catalysis. Over the past century, the Sabatier principle has already provided a conceptual framework for optimal catalyst design by adjusting the electronic structure of the catalytic material via a change in composition. Beyond composition, it is essential to recognize that the geometric atomic structures of a catalyst, encompassing terraces, edges, steps, kinks, and corners, have a substantial impact on the activity and selectivity of a chemical reaction. Crystal-phase engineering has the capacity to bring about substantial alterations in the electronic and geometric configurations of a catalyst, enabling control over coordination numbers, morphological features, and the arrangement of surface atoms. Modulating the crystallographic phase is therefore an important strategy for improving the stability, activity, and selectivity of catalytic materials. Nonetheless, a complete understanding of how the performance depends on the crystal phase of a catalyst remains elusive, primarily due to the absence of a molecular-level view of active sites across various crystal phases. In this review, we primarily focus on assessing the dependence of catalytic performance on crystal phases to elucidate the challenges and complexities inherent in heterogeneous catalysis, ultimately aiming for improved catalyst design.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Composition</subject><subject>Coordination numbers</subject><subject>Crystallography</subject><subject>Crystals</subject><subject>Electronic structure</subject><issn>0009-2665</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRbK3-AkECXryknf3qbo4SqhUKetDzskknbUo-6m4j9N-7tbEHD56Gged9Z3gIuaUwpsDoxOZ-nK-xdvg15jmAAHZGhlQyiKc6gXMyBIAkZtOpHJAr7zdhlZKpSzLgGoSQGoZEpG7vd7aK39bWYzRrVmWD6MpmFZVNNMcdunaFDbadj1IbwL0v_TW5KGzl8aafI_LxNHtP5_Hi9fklfVzEliu-izMONqGaMSGUEgq0XAqe5CyTkFhUSJXk1masAG7RZjTjDJmluWaKFzlHPiIPx96taz879DtTlz7HqrI_DxmmEyW0UpoF9P4Pumk714TvDEsoF1orJgLFj1TuWu8dFmbrytq6vaFgDlJNkGp6qaaXGlJ3fXeX1bg8ZX4tBmByBA7p093_Kr8BTdyDvg</recordid><startdate>20240110</startdate><enddate>20240110</enddate><creator>Zhao, Jian-Wen</creator><creator>Wang, Hong-Yue</creator><creator>Feng, Li</creator><creator>Zhu, Jin-Ze</creator><creator>Liu, Jin-Xun</creator><creator>Li, Wei-Xue</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7499-4197</orcidid><orcidid>https://orcid.org/0000-0002-5043-3088</orcidid></search><sort><creationdate>20240110</creationdate><title>Crystal-Phase Engineering in Heterogeneous Catalysis</title><author>Zhao, Jian-Wen ; Wang, Hong-Yue ; Feng, Li ; Zhu, Jin-Ze ; Liu, Jin-Xun ; Li, Wei-Xue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-b30a91822447747085d439c2b509ae7e1753aab2f03aeab1b32e2a1c8273fc3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Composition</topic><topic>Coordination numbers</topic><topic>Crystallography</topic><topic>Crystals</topic><topic>Electronic structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jian-Wen</creatorcontrib><creatorcontrib>Wang, Hong-Yue</creatorcontrib><creatorcontrib>Feng, Li</creatorcontrib><creatorcontrib>Zhu, Jin-Ze</creatorcontrib><creatorcontrib>Liu, Jin-Xun</creatorcontrib><creatorcontrib>Li, Wei-Xue</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Jian-Wen</au><au>Wang, Hong-Yue</au><au>Feng, Li</au><au>Zhu, Jin-Ze</au><au>Liu, Jin-Xun</au><au>Li, Wei-Xue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal-Phase Engineering in Heterogeneous Catalysis</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2024-01-10</date><risdate>2024</risdate><volume>124</volume><issue>1</issue><spage>164</spage><epage>209</epage><pages>164-209</pages><issn>0009-2665</issn><eissn>1520-6890</eissn><abstract>The performance of a chemical reaction is critically dependent on the electronic and/or geometric structures of a material in heterogeneous catalysis. Over the past century, the Sabatier principle has already provided a conceptual framework for optimal catalyst design by adjusting the electronic structure of the catalytic material via a change in composition. Beyond composition, it is essential to recognize that the geometric atomic structures of a catalyst, encompassing terraces, edges, steps, kinks, and corners, have a substantial impact on the activity and selectivity of a chemical reaction. Crystal-phase engineering has the capacity to bring about substantial alterations in the electronic and geometric configurations of a catalyst, enabling control over coordination numbers, morphological features, and the arrangement of surface atoms. Modulating the crystallographic phase is therefore an important strategy for improving the stability, activity, and selectivity of catalytic materials. Nonetheless, a complete understanding of how the performance depends on the crystal phase of a catalyst remains elusive, primarily due to the absence of a molecular-level view of active sites across various crystal phases. In this review, we primarily focus on assessing the dependence of catalytic performance on crystal phases to elucidate the challenges and complexities inherent in heterogeneous catalysis, ultimately aiming for improved catalyst design.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38044580</pmid><doi>10.1021/acs.chemrev.3c00402</doi><tpages>46</tpages><orcidid>https://orcid.org/0000-0002-7499-4197</orcidid><orcidid>https://orcid.org/0000-0002-5043-3088</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2665 |
ispartof | Chemical reviews, 2024-01, Vol.124 (1), p.164-209 |
issn | 0009-2665 1520-6890 |
language | eng |
recordid | cdi_proquest_miscellaneous_2897487782 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Catalysis Catalysts Chemical reactions Composition Coordination numbers Crystallography Crystals Electronic structure |
title | Crystal-Phase Engineering in Heterogeneous Catalysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A51%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal-Phase%20Engineering%20in%20Heterogeneous%20Catalysis&rft.jtitle=Chemical%20reviews&rft.au=Zhao,%20Jian-Wen&rft.date=2024-01-10&rft.volume=124&rft.issue=1&rft.spage=164&rft.epage=209&rft.pages=164-209&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.3c00402&rft_dat=%3Cproquest_cross%3E2913488724%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a373t-b30a91822447747085d439c2b509ae7e1753aab2f03aeab1b32e2a1c8273fc3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2913488724&rft_id=info:pmid/38044580&rfr_iscdi=true |