Loading…
Numerical computation of the local feedback stabilizing matrix via linear programming
The paper contains an algorithm,for the numerical computation of the local feedback stabilizing matrix via linear programming for a system (A, B/sub d/) consisting of two interconnected subsystems. Following the initial definition of the global system and its two subsystems in the state space, an eq...
Saved in:
Published in: | IEEE transactions on automatic control 1998-08, Vol.43 (8), p.1175-1179 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c296t-ec3f331a78ad15a7e34dd990b7f8667ed2cc7d8e9c309ddef4d963654f161f0a3 |
container_end_page | 1179 |
container_issue | 8 |
container_start_page | 1175 |
container_title | IEEE transactions on automatic control |
container_volume | 43 |
creator | Parisses, C.E. Fessas, P.S. |
description | The paper contains an algorithm,for the numerical computation of the local feedback stabilizing matrix via linear programming for a system (A, B/sub d/) consisting of two interconnected subsystems. Following the initial definition of the global system and its two subsystems in the state space, an equivalent system defined in the operator domain by an appropriate polynomial matrix description (PMD) is determined. This is based on the intercontrollability matrix D(s) of system (A, B/sub d/) and the determination of its kernel U(s). Applying a suitable transformation to the PMD system matrix M/sub d/(s), and based on linear programming methods, an algorithm with which the coefficients of the feedback stabilizing matrix could be computed is finally proposed. |
doi_str_mv | 10.1109/9.704996 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_28976426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>704996</ieee_id><sourcerecordid>28976426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-ec3f331a78ad15a7e34dd990b7f8667ed2cc7d8e9c309ddef4d963654f161f0a3</originalsourceid><addsrcrecordid>eNqN0EtLAzEUBeAgCtYquHaVhYibqXlNZrKU4guKbux6uE1uanQeNZmK-uud0tK1q3A5HydwCDnnbMI5MzdmUjBljD4gI57nZSZyIQ_JiDFeZkaU-picpPQ-nFopPiLz53WDMVioqe2a1bqHPnQt7Tzt35DW3SbwiG4B9oOmHhahDr-hXdIG-hi-6VcAWocWIdJV7JYRmmZIT8mRhzrh2e4dk_n93ev0MZu9PDxNb2eZFUb3GVrppeRQlOB4DgVK5ZwxbFH4UusCnbC2cCUaK5lxDr1yRkudK8819wzkmFxte4e_P9eY-qoJyWJdQ4vdOlWiNIVWQv8DKqVKwwZ4vYU2dilF9NUqhgbiT8VZtRm4MtV24IFe7johDTP5CK0Nae-FVIWQYmAXWxYQcZ_uOv4Am0yDhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28444890</pqid></control><display><type>article</type><title>Numerical computation of the local feedback stabilizing matrix via linear programming</title><source>IEEE Xplore (Online service)</source><creator>Parisses, C.E. ; Fessas, P.S.</creator><creatorcontrib>Parisses, C.E. ; Fessas, P.S.</creatorcontrib><description>The paper contains an algorithm,for the numerical computation of the local feedback stabilizing matrix via linear programming for a system (A, B/sub d/) consisting of two interconnected subsystems. Following the initial definition of the global system and its two subsystems in the state space, an equivalent system defined in the operator domain by an appropriate polynomial matrix description (PMD) is determined. This is based on the intercontrollability matrix D(s) of system (A, B/sub d/) and the determination of its kernel U(s). Applying a suitable transformation to the PMD system matrix M/sub d/(s), and based on linear programming methods, an algorithm with which the coefficients of the feedback stabilizing matrix could be computed is finally proposed.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.704996</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control system analysis ; Control systems ; Control theory. Systems ; Controllability ; Exact sciences and technology ; Interconnected systems ; Kernel ; Linear programming ; Polynomials ; State feedback ; State-space methods ; Vectors</subject><ispartof>IEEE transactions on automatic control, 1998-08, Vol.43 (8), p.1175-1179</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-ec3f331a78ad15a7e34dd990b7f8667ed2cc7d8e9c309ddef4d963654f161f0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/704996$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2347232$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Parisses, C.E.</creatorcontrib><creatorcontrib>Fessas, P.S.</creatorcontrib><title>Numerical computation of the local feedback stabilizing matrix via linear programming</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The paper contains an algorithm,for the numerical computation of the local feedback stabilizing matrix via linear programming for a system (A, B/sub d/) consisting of two interconnected subsystems. Following the initial definition of the global system and its two subsystems in the state space, an equivalent system defined in the operator domain by an appropriate polynomial matrix description (PMD) is determined. This is based on the intercontrollability matrix D(s) of system (A, B/sub d/) and the determination of its kernel U(s). Applying a suitable transformation to the PMD system matrix M/sub d/(s), and based on linear programming methods, an algorithm with which the coefficients of the feedback stabilizing matrix could be computed is finally proposed.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Controllability</subject><subject>Exact sciences and technology</subject><subject>Interconnected systems</subject><subject>Kernel</subject><subject>Linear programming</subject><subject>Polynomials</subject><subject>State feedback</subject><subject>State-space methods</subject><subject>Vectors</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqN0EtLAzEUBeAgCtYquHaVhYibqXlNZrKU4guKbux6uE1uanQeNZmK-uud0tK1q3A5HydwCDnnbMI5MzdmUjBljD4gI57nZSZyIQ_JiDFeZkaU-picpPQ-nFopPiLz53WDMVioqe2a1bqHPnQt7Tzt35DW3SbwiG4B9oOmHhahDr-hXdIG-hi-6VcAWocWIdJV7JYRmmZIT8mRhzrh2e4dk_n93ev0MZu9PDxNb2eZFUb3GVrppeRQlOB4DgVK5ZwxbFH4UusCnbC2cCUaK5lxDr1yRkudK8819wzkmFxte4e_P9eY-qoJyWJdQ4vdOlWiNIVWQv8DKqVKwwZ4vYU2dilF9NUqhgbiT8VZtRm4MtV24IFe7johDTP5CK0Nae-FVIWQYmAXWxYQcZ_uOv4Am0yDhg</recordid><startdate>19980801</startdate><enddate>19980801</enddate><creator>Parisses, C.E.</creator><creator>Fessas, P.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19980801</creationdate><title>Numerical computation of the local feedback stabilizing matrix via linear programming</title><author>Parisses, C.E. ; Fessas, P.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-ec3f331a78ad15a7e34dd990b7f8667ed2cc7d8e9c309ddef4d963654f161f0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Controllability</topic><topic>Exact sciences and technology</topic><topic>Interconnected systems</topic><topic>Kernel</topic><topic>Linear programming</topic><topic>Polynomials</topic><topic>State feedback</topic><topic>State-space methods</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parisses, C.E.</creatorcontrib><creatorcontrib>Fessas, P.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parisses, C.E.</au><au>Fessas, P.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical computation of the local feedback stabilizing matrix via linear programming</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1998-08-01</date><risdate>1998</risdate><volume>43</volume><issue>8</issue><spage>1175</spage><epage>1179</epage><pages>1175-1179</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The paper contains an algorithm,for the numerical computation of the local feedback stabilizing matrix via linear programming for a system (A, B/sub d/) consisting of two interconnected subsystems. Following the initial definition of the global system and its two subsystems in the state space, an equivalent system defined in the operator domain by an appropriate polynomial matrix description (PMD) is determined. This is based on the intercontrollability matrix D(s) of system (A, B/sub d/) and the determination of its kernel U(s). Applying a suitable transformation to the PMD system matrix M/sub d/(s), and based on linear programming methods, an algorithm with which the coefficients of the feedback stabilizing matrix could be computed is finally proposed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.704996</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 1998-08, Vol.43 (8), p.1175-1179 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_miscellaneous_28976426 |
source | IEEE Xplore (Online service) |
subjects | Applied sciences Computer science control theory systems Control system analysis Control systems Control theory. Systems Controllability Exact sciences and technology Interconnected systems Kernel Linear programming Polynomials State feedback State-space methods Vectors |
title | Numerical computation of the local feedback stabilizing matrix via linear programming |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A52%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20computation%20of%20the%20local%20feedback%20stabilizing%20matrix%20via%20linear%20programming&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Parisses,%20C.E.&rft.date=1998-08-01&rft.volume=43&rft.issue=8&rft.spage=1175&rft.epage=1179&rft.pages=1175-1179&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.704996&rft_dat=%3Cproquest_pasca%3E28976426%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-ec3f331a78ad15a7e34dd990b7f8667ed2cc7d8e9c309ddef4d963654f161f0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28444890&rft_id=info:pmid/&rft_ieee_id=704996&rfr_iscdi=true |