Loading…

Numerical computation of the local feedback stabilizing matrix via linear programming

The paper contains an algorithm,for the numerical computation of the local feedback stabilizing matrix via linear programming for a system (A, B/sub d/) consisting of two interconnected subsystems. Following the initial definition of the global system and its two subsystems in the state space, an eq...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 1998-08, Vol.43 (8), p.1175-1179
Main Authors: Parisses, C.E., Fessas, P.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c296t-ec3f331a78ad15a7e34dd990b7f8667ed2cc7d8e9c309ddef4d963654f161f0a3
container_end_page 1179
container_issue 8
container_start_page 1175
container_title IEEE transactions on automatic control
container_volume 43
creator Parisses, C.E.
Fessas, P.S.
description The paper contains an algorithm,for the numerical computation of the local feedback stabilizing matrix via linear programming for a system (A, B/sub d/) consisting of two interconnected subsystems. Following the initial definition of the global system and its two subsystems in the state space, an equivalent system defined in the operator domain by an appropriate polynomial matrix description (PMD) is determined. This is based on the intercontrollability matrix D(s) of system (A, B/sub d/) and the determination of its kernel U(s). Applying a suitable transformation to the PMD system matrix M/sub d/(s), and based on linear programming methods, an algorithm with which the coefficients of the feedback stabilizing matrix could be computed is finally proposed.
doi_str_mv 10.1109/9.704996
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_28976426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>704996</ieee_id><sourcerecordid>28976426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-ec3f331a78ad15a7e34dd990b7f8667ed2cc7d8e9c309ddef4d963654f161f0a3</originalsourceid><addsrcrecordid>eNqN0EtLAzEUBeAgCtYquHaVhYibqXlNZrKU4guKbux6uE1uanQeNZmK-uud0tK1q3A5HydwCDnnbMI5MzdmUjBljD4gI57nZSZyIQ_JiDFeZkaU-picpPQ-nFopPiLz53WDMVioqe2a1bqHPnQt7Tzt35DW3SbwiG4B9oOmHhahDr-hXdIG-hi-6VcAWocWIdJV7JYRmmZIT8mRhzrh2e4dk_n93ev0MZu9PDxNb2eZFUb3GVrppeRQlOB4DgVK5ZwxbFH4UusCnbC2cCUaK5lxDr1yRkudK8819wzkmFxte4e_P9eY-qoJyWJdQ4vdOlWiNIVWQv8DKqVKwwZ4vYU2dilF9NUqhgbiT8VZtRm4MtV24IFe7johDTP5CK0Nae-FVIWQYmAXWxYQcZ_uOv4Am0yDhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28444890</pqid></control><display><type>article</type><title>Numerical computation of the local feedback stabilizing matrix via linear programming</title><source>IEEE Xplore (Online service)</source><creator>Parisses, C.E. ; Fessas, P.S.</creator><creatorcontrib>Parisses, C.E. ; Fessas, P.S.</creatorcontrib><description>The paper contains an algorithm,for the numerical computation of the local feedback stabilizing matrix via linear programming for a system (A, B/sub d/) consisting of two interconnected subsystems. Following the initial definition of the global system and its two subsystems in the state space, an equivalent system defined in the operator domain by an appropriate polynomial matrix description (PMD) is determined. This is based on the intercontrollability matrix D(s) of system (A, B/sub d/) and the determination of its kernel U(s). Applying a suitable transformation to the PMD system matrix M/sub d/(s), and based on linear programming methods, an algorithm with which the coefficients of the feedback stabilizing matrix could be computed is finally proposed.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.704996</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control system analysis ; Control systems ; Control theory. Systems ; Controllability ; Exact sciences and technology ; Interconnected systems ; Kernel ; Linear programming ; Polynomials ; State feedback ; State-space methods ; Vectors</subject><ispartof>IEEE transactions on automatic control, 1998-08, Vol.43 (8), p.1175-1179</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-ec3f331a78ad15a7e34dd990b7f8667ed2cc7d8e9c309ddef4d963654f161f0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/704996$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2347232$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Parisses, C.E.</creatorcontrib><creatorcontrib>Fessas, P.S.</creatorcontrib><title>Numerical computation of the local feedback stabilizing matrix via linear programming</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>The paper contains an algorithm,for the numerical computation of the local feedback stabilizing matrix via linear programming for a system (A, B/sub d/) consisting of two interconnected subsystems. Following the initial definition of the global system and its two subsystems in the state space, an equivalent system defined in the operator domain by an appropriate polynomial matrix description (PMD) is determined. This is based on the intercontrollability matrix D(s) of system (A, B/sub d/) and the determination of its kernel U(s). Applying a suitable transformation to the PMD system matrix M/sub d/(s), and based on linear programming methods, an algorithm with which the coefficients of the feedback stabilizing matrix could be computed is finally proposed.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system analysis</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Controllability</subject><subject>Exact sciences and technology</subject><subject>Interconnected systems</subject><subject>Kernel</subject><subject>Linear programming</subject><subject>Polynomials</subject><subject>State feedback</subject><subject>State-space methods</subject><subject>Vectors</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqN0EtLAzEUBeAgCtYquHaVhYibqXlNZrKU4guKbux6uE1uanQeNZmK-uud0tK1q3A5HydwCDnnbMI5MzdmUjBljD4gI57nZSZyIQ_JiDFeZkaU-picpPQ-nFopPiLz53WDMVioqe2a1bqHPnQt7Tzt35DW3SbwiG4B9oOmHhahDr-hXdIG-hi-6VcAWocWIdJV7JYRmmZIT8mRhzrh2e4dk_n93ev0MZu9PDxNb2eZFUb3GVrppeRQlOB4DgVK5ZwxbFH4UusCnbC2cCUaK5lxDr1yRkudK8819wzkmFxte4e_P9eY-qoJyWJdQ4vdOlWiNIVWQv8DKqVKwwZ4vYU2dilF9NUqhgbiT8VZtRm4MtV24IFe7johDTP5CK0Nae-FVIWQYmAXWxYQcZ_uOv4Am0yDhg</recordid><startdate>19980801</startdate><enddate>19980801</enddate><creator>Parisses, C.E.</creator><creator>Fessas, P.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>19980801</creationdate><title>Numerical computation of the local feedback stabilizing matrix via linear programming</title><author>Parisses, C.E. ; Fessas, P.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-ec3f331a78ad15a7e34dd990b7f8667ed2cc7d8e9c309ddef4d963654f161f0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system analysis</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Controllability</topic><topic>Exact sciences and technology</topic><topic>Interconnected systems</topic><topic>Kernel</topic><topic>Linear programming</topic><topic>Polynomials</topic><topic>State feedback</topic><topic>State-space methods</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parisses, C.E.</creatorcontrib><creatorcontrib>Fessas, P.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parisses, C.E.</au><au>Fessas, P.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical computation of the local feedback stabilizing matrix via linear programming</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1998-08-01</date><risdate>1998</risdate><volume>43</volume><issue>8</issue><spage>1175</spage><epage>1179</epage><pages>1175-1179</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>The paper contains an algorithm,for the numerical computation of the local feedback stabilizing matrix via linear programming for a system (A, B/sub d/) consisting of two interconnected subsystems. Following the initial definition of the global system and its two subsystems in the state space, an equivalent system defined in the operator domain by an appropriate polynomial matrix description (PMD) is determined. This is based on the intercontrollability matrix D(s) of system (A, B/sub d/) and the determination of its kernel U(s). Applying a suitable transformation to the PMD system matrix M/sub d/(s), and based on linear programming methods, an algorithm with which the coefficients of the feedback stabilizing matrix could be computed is finally proposed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/9.704996</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 1998-08, Vol.43 (8), p.1175-1179
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_28976426
source IEEE Xplore (Online service)
subjects Applied sciences
Computer science
control theory
systems
Control system analysis
Control systems
Control theory. Systems
Controllability
Exact sciences and technology
Interconnected systems
Kernel
Linear programming
Polynomials
State feedback
State-space methods
Vectors
title Numerical computation of the local feedback stabilizing matrix via linear programming
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A52%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20computation%20of%20the%20local%20feedback%20stabilizing%20matrix%20via%20linear%20programming&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Parisses,%20C.E.&rft.date=1998-08-01&rft.volume=43&rft.issue=8&rft.spage=1175&rft.epage=1179&rft.pages=1175-1179&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.704996&rft_dat=%3Cproquest_pasca%3E28976426%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-ec3f331a78ad15a7e34dd990b7f8667ed2cc7d8e9c309ddef4d963654f161f0a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28444890&rft_id=info:pmid/&rft_ieee_id=704996&rfr_iscdi=true