Loading…

Dye-doped cholesteric-liquid-crystal room-temperature single-photon source

Fluorescence antibunching from single terrylene molecules embedded in a cholesteric-liquid-crystal host is used to demonstrate operation of a room-temperature single-photon source. One-dimensional (1-D) photonic-band-gap microcavities in planar-aligned cholesteric liquid crystals with band gaps from...

Full description

Saved in:
Bibliographic Details
Published in:Journal of modern optics 2004-06, Vol.51 (9-10), p.1535-1547
Main Authors: Lukishova, Svetlana G., Schmid, Ansgar W., Supranowitz, Christopher M., Lippa, Nadine, McNamara, Andrew J., Boyd, Robert W., Stroud, C. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c320t-f020bac90a8d2dd1b4dc860687833b1dd5a50c2a15a02b14509eb57b43250cba3
cites cdi_FETCH-LOGICAL-c320t-f020bac90a8d2dd1b4dc860687833b1dd5a50c2a15a02b14509eb57b43250cba3
container_end_page 1547
container_issue 9-10
container_start_page 1535
container_title Journal of modern optics
container_volume 51
creator Lukishova, Svetlana G.
Schmid, Ansgar W.
Supranowitz, Christopher M.
Lippa, Nadine
McNamara, Andrew J.
Boyd, Robert W.
Stroud, C. R.
description Fluorescence antibunching from single terrylene molecules embedded in a cholesteric-liquid-crystal host is used to demonstrate operation of a room-temperature single-photon source. One-dimensional (1-D) photonic-band-gap microcavities in planar-aligned cholesteric liquid crystals with band gaps from visible to near-infrared spectral regions are fabricated. Liquid-crystal hosts (including liquid crystal oligomers and polymers) increase the source efficiency, firstly, by aligning the dye molecules along the direction preferable for maximum excitation efficiency (deterministic molecular alignment provides deterministically polarized output photons), secondly, by tuning the 1-D photonic-band-gap microcavity to the dye fluorescence band and thirdly, by protecting the dye molecules from quenchers, such as oxygen. In our present experiments, using oxygen-depleted liquid-crystal hosts, dye bleaching is avoided for periods exceeding one hour of continuous 532 nm excitation.
doi_str_mv 10.1080/09500340408235291
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_28983219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28983219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-f020bac90a8d2dd1b4dc860687833b1dd5a50c2a15a02b14509eb57b43250cba3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-AG970Vt0kjTdFLzI-s2CFz2XNEndSNp0kxTtv7fLKh4W8TQw8zwvw4vQKYELAgIuoeAALIMMBGWcFmQPTQjLKWaQZftosrnjDXCIjmJ8B4AcGJ2gp5vBYO07o2dq5Z2JyQSrsLPr3mqswhCTdLPgfYOTaToTZOqDmUXbvjmDu5VPvp1F3wdljtFBLV00J99zil7vbl8WD3j5fP-4uF5ixSgkXAOFSqoCpNBUa1JlWokccjEXjFVEay45KCoJl0ArknEoTMXnVcbouK8km6LzbW4X_LofPy4bG5VxTrbG97GkohCMkmIEyRZUwccYTF12wTYyDCWBctNaudPa6Jx9h8uopKuDbJWNvyIvgFPgIzffcratfWjkhw9Ol0kOzocfaSe9TJ9pNK_-NdnfD34B-yuSEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28983219</pqid></control><display><type>article</type><title>Dye-doped cholesteric-liquid-crystal room-temperature single-photon source</title><source>Taylor and Francis Science and Technology Collection</source><creator>Lukishova, Svetlana G. ; Schmid, Ansgar W. ; Supranowitz, Christopher M. ; Lippa, Nadine ; McNamara, Andrew J. ; Boyd, Robert W. ; Stroud, C. R.</creator><creatorcontrib>Lukishova, Svetlana G. ; Schmid, Ansgar W. ; Supranowitz, Christopher M. ; Lippa, Nadine ; McNamara, Andrew J. ; Boyd, Robert W. ; Stroud, C. R.</creatorcontrib><description>Fluorescence antibunching from single terrylene molecules embedded in a cholesteric-liquid-crystal host is used to demonstrate operation of a room-temperature single-photon source. One-dimensional (1-D) photonic-band-gap microcavities in planar-aligned cholesteric liquid crystals with band gaps from visible to near-infrared spectral regions are fabricated. Liquid-crystal hosts (including liquid crystal oligomers and polymers) increase the source efficiency, firstly, by aligning the dye molecules along the direction preferable for maximum excitation efficiency (deterministic molecular alignment provides deterministically polarized output photons), secondly, by tuning the 1-D photonic-band-gap microcavity to the dye fluorescence band and thirdly, by protecting the dye molecules from quenchers, such as oxygen. In our present experiments, using oxygen-depleted liquid-crystal hosts, dye bleaching is avoided for periods exceeding one hour of continuous 532 nm excitation.</description><identifier>ISSN: 0950-0340</identifier><identifier>EISSN: 1362-3044</identifier><identifier>DOI: 10.1080/09500340408235291</identifier><identifier>CODEN: JMOPEW</identifier><language>eng</language><publisher>London: Taylor &amp; Francis Group</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Optics ; Physics ; Quantum optics</subject><ispartof>Journal of modern optics, 2004-06, Vol.51 (9-10), p.1535-1547</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2004</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-f020bac90a8d2dd1b4dc860687833b1dd5a50c2a15a02b14509eb57b43250cba3</citedby><cites>FETCH-LOGICAL-c320t-f020bac90a8d2dd1b4dc860687833b1dd5a50c2a15a02b14509eb57b43250cba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15905205$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lukishova, Svetlana G.</creatorcontrib><creatorcontrib>Schmid, Ansgar W.</creatorcontrib><creatorcontrib>Supranowitz, Christopher M.</creatorcontrib><creatorcontrib>Lippa, Nadine</creatorcontrib><creatorcontrib>McNamara, Andrew J.</creatorcontrib><creatorcontrib>Boyd, Robert W.</creatorcontrib><creatorcontrib>Stroud, C. R.</creatorcontrib><title>Dye-doped cholesteric-liquid-crystal room-temperature single-photon source</title><title>Journal of modern optics</title><description>Fluorescence antibunching from single terrylene molecules embedded in a cholesteric-liquid-crystal host is used to demonstrate operation of a room-temperature single-photon source. One-dimensional (1-D) photonic-band-gap microcavities in planar-aligned cholesteric liquid crystals with band gaps from visible to near-infrared spectral regions are fabricated. Liquid-crystal hosts (including liquid crystal oligomers and polymers) increase the source efficiency, firstly, by aligning the dye molecules along the direction preferable for maximum excitation efficiency (deterministic molecular alignment provides deterministically polarized output photons), secondly, by tuning the 1-D photonic-band-gap microcavity to the dye fluorescence band and thirdly, by protecting the dye molecules from quenchers, such as oxygen. In our present experiments, using oxygen-depleted liquid-crystal hosts, dye bleaching is avoided for periods exceeding one hour of continuous 532 nm excitation.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Optics</subject><subject>Physics</subject><subject>Quantum optics</subject><issn>0950-0340</issn><issn>1362-3044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-AG970Vt0kjTdFLzI-s2CFz2XNEndSNp0kxTtv7fLKh4W8TQw8zwvw4vQKYELAgIuoeAALIMMBGWcFmQPTQjLKWaQZftosrnjDXCIjmJ8B4AcGJ2gp5vBYO07o2dq5Z2JyQSrsLPr3mqswhCTdLPgfYOTaToTZOqDmUXbvjmDu5VPvp1F3wdljtFBLV00J99zil7vbl8WD3j5fP-4uF5ixSgkXAOFSqoCpNBUa1JlWokccjEXjFVEay45KCoJl0ArknEoTMXnVcbouK8km6LzbW4X_LofPy4bG5VxTrbG97GkohCMkmIEyRZUwccYTF12wTYyDCWBctNaudPa6Jx9h8uopKuDbJWNvyIvgFPgIzffcratfWjkhw9Ol0kOzocfaSe9TJ9pNK_-NdnfD34B-yuSEg</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Lukishova, Svetlana G.</creator><creator>Schmid, Ansgar W.</creator><creator>Supranowitz, Christopher M.</creator><creator>Lippa, Nadine</creator><creator>McNamara, Andrew J.</creator><creator>Boyd, Robert W.</creator><creator>Stroud, C. R.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20040601</creationdate><title>Dye-doped cholesteric-liquid-crystal room-temperature single-photon source</title><author>Lukishova, Svetlana G. ; Schmid, Ansgar W. ; Supranowitz, Christopher M. ; Lippa, Nadine ; McNamara, Andrew J. ; Boyd, Robert W. ; Stroud, C. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-f020bac90a8d2dd1b4dc860687833b1dd5a50c2a15a02b14509eb57b43250cba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Optics</topic><topic>Physics</topic><topic>Quantum optics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lukishova, Svetlana G.</creatorcontrib><creatorcontrib>Schmid, Ansgar W.</creatorcontrib><creatorcontrib>Supranowitz, Christopher M.</creatorcontrib><creatorcontrib>Lippa, Nadine</creatorcontrib><creatorcontrib>McNamara, Andrew J.</creatorcontrib><creatorcontrib>Boyd, Robert W.</creatorcontrib><creatorcontrib>Stroud, C. R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of modern optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lukishova, Svetlana G.</au><au>Schmid, Ansgar W.</au><au>Supranowitz, Christopher M.</au><au>Lippa, Nadine</au><au>McNamara, Andrew J.</au><au>Boyd, Robert W.</au><au>Stroud, C. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dye-doped cholesteric-liquid-crystal room-temperature single-photon source</atitle><jtitle>Journal of modern optics</jtitle><date>2004-06-01</date><risdate>2004</risdate><volume>51</volume><issue>9-10</issue><spage>1535</spage><epage>1547</epage><pages>1535-1547</pages><issn>0950-0340</issn><eissn>1362-3044</eissn><coden>JMOPEW</coden><abstract>Fluorescence antibunching from single terrylene molecules embedded in a cholesteric-liquid-crystal host is used to demonstrate operation of a room-temperature single-photon source. One-dimensional (1-D) photonic-band-gap microcavities in planar-aligned cholesteric liquid crystals with band gaps from visible to near-infrared spectral regions are fabricated. Liquid-crystal hosts (including liquid crystal oligomers and polymers) increase the source efficiency, firstly, by aligning the dye molecules along the direction preferable for maximum excitation efficiency (deterministic molecular alignment provides deterministically polarized output photons), secondly, by tuning the 1-D photonic-band-gap microcavity to the dye fluorescence band and thirdly, by protecting the dye molecules from quenchers, such as oxygen. In our present experiments, using oxygen-depleted liquid-crystal hosts, dye bleaching is avoided for periods exceeding one hour of continuous 532 nm excitation.</abstract><cop>London</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/09500340408235291</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-0340
ispartof Journal of modern optics, 2004-06, Vol.51 (9-10), p.1535-1547
issn 0950-0340
1362-3044
language eng
recordid cdi_proquest_miscellaneous_28983219
source Taylor and Francis Science and Technology Collection
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Optics
Physics
Quantum optics
title Dye-doped cholesteric-liquid-crystal room-temperature single-photon source
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dye-doped%20cholesteric-liquid-crystal%20room-temperature%20single-photon%20source&rft.jtitle=Journal%20of%20modern%20optics&rft.au=Lukishova,%20Svetlana%20G.&rft.date=2004-06-01&rft.volume=51&rft.issue=9-10&rft.spage=1535&rft.epage=1547&rft.pages=1535-1547&rft.issn=0950-0340&rft.eissn=1362-3044&rft.coden=JMOPEW&rft_id=info:doi/10.1080/09500340408235291&rft_dat=%3Cproquest_pasca%3E28983219%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-f020bac90a8d2dd1b4dc860687833b1dd5a50c2a15a02b14509eb57b43250cba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28983219&rft_id=info:pmid/&rfr_iscdi=true