Loading…

Numerical analysis of pressure field on curved self-weighted metallic roofs due to the wind effect by the finite element method

In this paper, an evaluation of distribution of the air pressure is determined throughout the curved and open self-weighted metallic roof due to the wind effect by the finite element method (FEM) [K. Bathe, Finite Element Procedures, Prentice-Hall, Englewood Cliffs, New York, 1996]. Data from experi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2006-07, Vol.192 (1), p.40-50
Main Authors: DEL COZ DIAZ, J. J, GARCIA NIETO, P. J, SUAREZ DOMINGUEZ, F. J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c432t-73bf9131541b31269546a75c60d603526e07340c3234412dbc43be026480c1ee3
cites cdi_FETCH-LOGICAL-c432t-73bf9131541b31269546a75c60d603526e07340c3234412dbc43be026480c1ee3
container_end_page 50
container_issue 1
container_start_page 40
container_title Journal of computational and applied mathematics
container_volume 192
creator DEL COZ DIAZ, J. J
GARCIA NIETO, P. J
SUAREZ DOMINGUEZ, F. J
description In this paper, an evaluation of distribution of the air pressure is determined throughout the curved and open self-weighted metallic roof due to the wind effect by the finite element method (FEM) [K. Bathe, Finite Element Procedures, Prentice-Hall, Englewood Cliffs, New York, 1996]. Data from experimental tests carried out in a wind tunnel involving a reduced scale model of a roof was used for comparison. The nonlinearity is due to time-averaged Navier–Stokes equations [C.A.J. Fletcher, Computational Techniques for Fluid Dynamics, Springer, Berlin, 1991] that govern the turbulent flow. The calculation has been carried out keeping in mind the possibility of turbulent flow in the vicinities of the walls, and speeds of wind have been analyzed between 30 and 40 m/s. Finally, the forces and moments are determined on the cover, as well as the distribution of pressures on the same one, comparing the results obtained with the Spanish and European Standards rules, giving place to the conclusions that are exposed in the study.
doi_str_mv 10.1016/j.cam.2005.04.035
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28985261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042705003067</els_id><sourcerecordid>27953039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-73bf9131541b31269546a75c60d603526e07340c3234412dbc43be026480c1ee3</originalsourceid><addsrcrecordid>eNqFkTuP1DAUhS0EEsPCD6BzA13C9SNxIiq04iWtoIHacpxrxiMnHmxnV1Px1_EwK9HtVta1vnOufQ4hrxm0DFj_7tBas7QcoGtBtiC6J2THBjU2TKnhKdmBUKoBydVz8iLnAwD0I5M78ufbtmDy1gRqVhNO2WcaHT0mzHlLSJ3HMNO4UrulW5xpxuCaO_S_9qVOCxYTgrc0xegynTekJdKyR3rn15mic2gLnU7_rpxffUGKARdcy1m7j_NL8syZkPHV_XlFfn76-OP6S3Pz_fPX6w83jZWCl0aJyY1MsE6ySTDej53sjepsD3NfP8t7BCUkWMGFlIzPU5VNCLyXA1iGKK7I24vvMcXfG-aiF58thmBWjFvWfBiHasMeB9XYCRBjBdkFtCnmnNDpY_KLSSfNQJ870QddO9HnTjRIXZ9ZNW_uzU2ukbtkVuvzf6FSXc9GqNz7C4c1kluPSWfrcbU4-1QT1XP0D2z5C_uYoUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27953039</pqid></control><display><type>article</type><title>Numerical analysis of pressure field on curved self-weighted metallic roofs due to the wind effect by the finite element method</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>DEL COZ DIAZ, J. J ; GARCIA NIETO, P. J ; SUAREZ DOMINGUEZ, F. J</creator><creatorcontrib>DEL COZ DIAZ, J. J ; GARCIA NIETO, P. J ; SUAREZ DOMINGUEZ, F. J</creatorcontrib><description>In this paper, an evaluation of distribution of the air pressure is determined throughout the curved and open self-weighted metallic roof due to the wind effect by the finite element method (FEM) [K. Bathe, Finite Element Procedures, Prentice-Hall, Englewood Cliffs, New York, 1996]. Data from experimental tests carried out in a wind tunnel involving a reduced scale model of a roof was used for comparison. The nonlinearity is due to time-averaged Navier–Stokes equations [C.A.J. Fletcher, Computational Techniques for Fluid Dynamics, Springer, Berlin, 1991] that govern the turbulent flow. The calculation has been carried out keeping in mind the possibility of turbulent flow in the vicinities of the walls, and speeds of wind have been analyzed between 30 and 40 m/s. Finally, the forces and moments are determined on the cover, as well as the distribution of pressures on the same one, comparing the results obtained with the Spanish and European Standards rules, giving place to the conclusions that are exposed in the study.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2005.04.035</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computational fluid dynamics ; Curved self-weighted metallic roofs ; Exact sciences and technology ; Finite element modeling ; Fundamental areas of phenomenology (including applications) ; k– [formula omitted] model ; Mathematical analysis ; Mathematics ; Numerical and experimental methods ; Partial differential equations ; Physics ; Sciences and techniques of general use ; Solid mechanics ; Steady incompressible flow ; Structural and continuum mechanics ; Theory and numerical methods</subject><ispartof>Journal of computational and applied mathematics, 2006-07, Vol.192 (1), p.40-50</ispartof><rights>2005 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-73bf9131541b31269546a75c60d603526e07340c3234412dbc43be026480c1ee3</citedby><cites>FETCH-LOGICAL-c432t-73bf9131541b31269546a75c60d603526e07340c3234412dbc43be026480c1ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17756190$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DEL COZ DIAZ, J. J</creatorcontrib><creatorcontrib>GARCIA NIETO, P. J</creatorcontrib><creatorcontrib>SUAREZ DOMINGUEZ, F. J</creatorcontrib><title>Numerical analysis of pressure field on curved self-weighted metallic roofs due to the wind effect by the finite element method</title><title>Journal of computational and applied mathematics</title><description>In this paper, an evaluation of distribution of the air pressure is determined throughout the curved and open self-weighted metallic roof due to the wind effect by the finite element method (FEM) [K. Bathe, Finite Element Procedures, Prentice-Hall, Englewood Cliffs, New York, 1996]. Data from experimental tests carried out in a wind tunnel involving a reduced scale model of a roof was used for comparison. The nonlinearity is due to time-averaged Navier–Stokes equations [C.A.J. Fletcher, Computational Techniques for Fluid Dynamics, Springer, Berlin, 1991] that govern the turbulent flow. The calculation has been carried out keeping in mind the possibility of turbulent flow in the vicinities of the walls, and speeds of wind have been analyzed between 30 and 40 m/s. Finally, the forces and moments are determined on the cover, as well as the distribution of pressures on the same one, comparing the results obtained with the Spanish and European Standards rules, giving place to the conclusions that are exposed in the study.</description><subject>Computational fluid dynamics</subject><subject>Curved self-weighted metallic roofs</subject><subject>Exact sciences and technology</subject><subject>Finite element modeling</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>k– [formula omitted] model</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical and experimental methods</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><subject>Solid mechanics</subject><subject>Steady incompressible flow</subject><subject>Structural and continuum mechanics</subject><subject>Theory and numerical methods</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkTuP1DAUhS0EEsPCD6BzA13C9SNxIiq04iWtoIHacpxrxiMnHmxnV1Px1_EwK9HtVta1vnOufQ4hrxm0DFj_7tBas7QcoGtBtiC6J2THBjU2TKnhKdmBUKoBydVz8iLnAwD0I5M78ufbtmDy1gRqVhNO2WcaHT0mzHlLSJ3HMNO4UrulW5xpxuCaO_S_9qVOCxYTgrc0xegynTekJdKyR3rn15mic2gLnU7_rpxffUGKARdcy1m7j_NL8syZkPHV_XlFfn76-OP6S3Pz_fPX6w83jZWCl0aJyY1MsE6ySTDej53sjepsD3NfP8t7BCUkWMGFlIzPU5VNCLyXA1iGKK7I24vvMcXfG-aiF58thmBWjFvWfBiHasMeB9XYCRBjBdkFtCnmnNDpY_KLSSfNQJ870QddO9HnTjRIXZ9ZNW_uzU2ukbtkVuvzf6FSXc9GqNz7C4c1kluPSWfrcbU4-1QT1XP0D2z5C_uYoUQ</recordid><startdate>20060715</startdate><enddate>20060715</enddate><creator>DEL COZ DIAZ, J. J</creator><creator>GARCIA NIETO, P. J</creator><creator>SUAREZ DOMINGUEZ, F. J</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>20060715</creationdate><title>Numerical analysis of pressure field on curved self-weighted metallic roofs due to the wind effect by the finite element method</title><author>DEL COZ DIAZ, J. J ; GARCIA NIETO, P. J ; SUAREZ DOMINGUEZ, F. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-73bf9131541b31269546a75c60d603526e07340c3234412dbc43be026480c1ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Computational fluid dynamics</topic><topic>Curved self-weighted metallic roofs</topic><topic>Exact sciences and technology</topic><topic>Finite element modeling</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>k– [formula omitted] model</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical and experimental methods</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><topic>Solid mechanics</topic><topic>Steady incompressible flow</topic><topic>Structural and continuum mechanics</topic><topic>Theory and numerical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DEL COZ DIAZ, J. J</creatorcontrib><creatorcontrib>GARCIA NIETO, P. J</creatorcontrib><creatorcontrib>SUAREZ DOMINGUEZ, F. J</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DEL COZ DIAZ, J. J</au><au>GARCIA NIETO, P. J</au><au>SUAREZ DOMINGUEZ, F. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical analysis of pressure field on curved self-weighted metallic roofs due to the wind effect by the finite element method</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2006-07-15</date><risdate>2006</risdate><volume>192</volume><issue>1</issue><spage>40</spage><epage>50</epage><pages>40-50</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>In this paper, an evaluation of distribution of the air pressure is determined throughout the curved and open self-weighted metallic roof due to the wind effect by the finite element method (FEM) [K. Bathe, Finite Element Procedures, Prentice-Hall, Englewood Cliffs, New York, 1996]. Data from experimental tests carried out in a wind tunnel involving a reduced scale model of a roof was used for comparison. The nonlinearity is due to time-averaged Navier–Stokes equations [C.A.J. Fletcher, Computational Techniques for Fluid Dynamics, Springer, Berlin, 1991] that govern the turbulent flow. The calculation has been carried out keeping in mind the possibility of turbulent flow in the vicinities of the walls, and speeds of wind have been analyzed between 30 and 40 m/s. Finally, the forces and moments are determined on the cover, as well as the distribution of pressures on the same one, comparing the results obtained with the Spanish and European Standards rules, giving place to the conclusions that are exposed in the study.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2005.04.035</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2006-07, Vol.192 (1), p.40-50
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_28985261
source ScienceDirect Freedom Collection 2022-2024
subjects Computational fluid dynamics
Curved self-weighted metallic roofs
Exact sciences and technology
Finite element modeling
Fundamental areas of phenomenology (including applications)
k– [formula omitted] model
Mathematical analysis
Mathematics
Numerical and experimental methods
Partial differential equations
Physics
Sciences and techniques of general use
Solid mechanics
Steady incompressible flow
Structural and continuum mechanics
Theory and numerical methods
title Numerical analysis of pressure field on curved self-weighted metallic roofs due to the wind effect by the finite element method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A29%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20analysis%20of%20pressure%20field%20on%20curved%20self-weighted%20metallic%20roofs%20due%20to%20the%20wind%20effect%20by%20the%20finite%20element%20method&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=DEL%20COZ%20DIAZ,%20J.%20J&rft.date=2006-07-15&rft.volume=192&rft.issue=1&rft.spage=40&rft.epage=50&rft.pages=40-50&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2005.04.035&rft_dat=%3Cproquest_cross%3E27953039%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c432t-73bf9131541b31269546a75c60d603526e07340c3234412dbc43be026480c1ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27953039&rft_id=info:pmid/&rfr_iscdi=true